IDEAS home Printed from https://ideas.repec.org/a/kap/poprpr/v40y2021i6d10.1007_s11113-021-09646-7.html
   My bibliography  Save this article

Using Synthetic Adjustments and Controlling to Improve County Population Forecasts from the Hamilton–Perry Method

Author

Listed:
  • Jeff Tayman

    (University of California San Diego)

  • David A. Swanson

    (University of California Riverside
    University of Washington)

  • Jack Baker

    (Transamerica Life, Underwriting Modernization – Research & Development)

Abstract

Tayman and Swanson (J Popul Res 34(3):209–231, 2017) found in Washington State counties that a forecast based on the Hamilton–Perry method using a synthetic adjustment (SYN) of cohort change ratios and child-woman ratios had greater accuracy and less bias compared to forecasts holding these ratios constant (CONST). In this paper, we assess the robustness of SYN’s efficacy by evaluating forecast accuracy, bias, and distributional error across age groups in counties nationwide. We also investigate whether forecast errors and their patterns change for SYN and CONST if forecasts by age and gender are adjusted to an independent total population forecast for each county. Our main findings are as follows: (1) SYN lowers forecast error compared to CONST whether the forecasts are controlled or not; (2) controlling also leads to the improvements in forecast error, often exceeding those in SYN; and (3) using SYN and controlling together has the greatest effect in reducing forecast error. These findings remain after controlling for population size and growth rate, but the positive impacts on forecast error of SYN and controlling are most evident in counties with less than 30,000 population and that grow by 15% or more.

Suggested Citation

  • Jeff Tayman & David A. Swanson & Jack Baker, 2021. "Using Synthetic Adjustments and Controlling to Improve County Population Forecasts from the Hamilton–Perry Method," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 40(6), pages 1355-1383, December.
  • Handle: RePEc:kap:poprpr:v:40:y:2021:i:6:d:10.1007_s11113-021-09646-7
    DOI: 10.1007/s11113-021-09646-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11113-021-09646-7
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11113-021-09646-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Rayer, 2007. "Population forecast accuracy: does the choice of summary measure of error matter?," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 26(2), pages 163-184, April.
    2. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    3. Jeff Tayman & Stanley Smith & Stefan Rayer, 2011. "Evaluating Population Forecast Accuracy: A Regression Approach Using County Data," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 30(2), pages 235-262, April.
    4. David A. Swanson, 2015. "On the Relationship among Values of the Same Summary Measure of Error when it is used across Multiple Characteristics at the Same Point in Time: An Examination of MALPE and MAPE," Review of Economics & Finance, Better Advances Press, Canada, vol. 5, pages 1-14, August.
    5. Tom Wilson, 2016. "Evaluation of Alternative Cohort-Component Models for Local Area Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 35(2), pages 241-261, April.
    6. David Swanson & Alan Schlottmann & Bob Schmidt, 2010. "Forecasting the Population of Census Tracts by Age and Sex: An Example of the Hamilton–Perry Method in Action," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 29(1), pages 47-63, February.
    7. Stanley Smith & Jeff Tayman, 2003. "An evaluation of population projections by age," Demography, Springer;Population Association of America (PAA), vol. 40(4), pages 741-757, November.
    8. Lois Fonseca & Jeff Tayman, 1989. "Postcensal estimates of household income distributions," Demography, Springer;Population Association of America (PAA), vol. 26(1), pages 149-159, February.
    9. Jeff Tayman & David A. Swanson, 2017. "Using modified cohort change and child-woman ratios in the Hamilton–Perry forecasting method," Journal of Population Research, Springer, vol. 34(3), pages 209-231, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tom Wilson, 2022. "Preparing local area population forecasts using a bi-regional cohort-component model without the need for local migration data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 46(32), pages 919-956.
    2. Philip Rees & Tom Wilson, 2023. "Accuracy of Local Authority Population Forecasts Produced by a New Minimal Data Model: A Case Study of England," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 42(6), pages 1-30, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jack Baker & David Swanson & Jeff Tayman, 2021. "The Accuracy of Hamilton–Perry Population Projections for Census Tracts in the United States," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 40(6), pages 1341-1354, December.
    2. Jeff Tayman & David A. Swanson, 2017. "Using modified cohort change and child-woman ratios in the Hamilton–Perry forecasting method," Journal of Population Research, Springer, vol. 34(3), pages 209-231, September.
    3. Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
    4. Tom Wilson, 2022. "Preparing local area population forecasts using a bi-regional cohort-component model without the need for local migration data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 46(32), pages 919-956.
    5. Jack Baker & David Swanson & Jeff Tayman, 2023. "Boosted Regression Trees for Small-Area Population Forecasting," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 42(4), pages 1-24, August.
    6. Stefan Rayer & Stanley Smith & Jeff Tayman, 2009. "Empirical Prediction Intervals for County Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 28(6), pages 773-793, December.
    7. Tom Wilson, 2016. "Evaluation of Alternative Cohort-Component Models for Local Area Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 35(2), pages 241-261, April.
    8. Philip Rees & Tom Wilson, 2023. "Accuracy of Local Authority Population Forecasts Produced by a New Minimal Data Model: A Case Study of England," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 42(6), pages 1-30, December.
    9. Stefan Rayer & Stanley Smith, 2014. "Population Projections by Age for Florida and its Counties: Assessing Accuracy and the Impact of Adjustments," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 33(5), pages 747-770, October.
    10. Ma, Lu & Srinivasan, Sivaramakrishnan, 2016. "An empirical assessment of factors affecting the accuracy of target-year synthetic populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 247-264.
    11. Saralees Nadarajah, 2009. "Models for over reported income," Applied Economics Letters, Taylor & Francis Journals, vol. 16(7), pages 699-703.
    12. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    13. Litsiou, Konstantia & Polychronakis, Yiannis & Karami, Azhdar & Nikolopoulos, Konstantinos, 2022. "Relative performance of judgmental methods for forecasting the success of megaprojects," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1185-1196.
    14. Alroomi, Azzam & Karamatzanis, Georgios & Nikolopoulos, Konstantinos & Tilba, Anna & Xiao, Shujun, 2022. "Fathoming empirical forecasting competitions’ winners," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1519-1525.
    15. Michael P. Cameron & William Cochrane, 2015. "Using Land-Use Modelling to Statistically Downscale Population Projections to Small Areas," Working Papers in Economics 15/12, University of Waikato.
    16. Jack Baker & Adelamar Alcantara & Xiaomin Ruan & Kendra Watkins & Srini Vasan, 2013. "A Comparative Evaluation of Error and Bias in Census Tract-Level Age/Sex-Specific Population Estimates: Component I (Net-Migration) vs Component III (Hamilton–Perry)," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 32(6), pages 919-942, December.
    17. Raihan Tanvir & Md Tanvir Rouf Shawon & Md. Golam Rabiul Alam, 2023. "DSE Stock Price Prediction using Hidden Markov Model," Papers 2302.08911, arXiv.org.
    18. Calatayud, Julia & Jornet, Marc & Mateu, Jorge & Pinto, Carla M.A., 2023. "A new population model for urban infestations," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    19. Gang Cheng & Sicong Wang & Yuhong Yang, 2015. "Forecast Combination under Heavy-Tailed Errors," Econometrics, MDPI, vol. 3(4), pages 1-28, November.
    20. Hüseyin İlker Erçen & Hüseyin Özdeşer & Turgut Türsoy, 2022. "The Impact of Macroeconomic Sustainability on Exchange Rate: Hybrid Machine-Learning Approach," Sustainability, MDPI, vol. 14(9), pages 1-19, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:poprpr:v:40:y:2021:i:6:d:10.1007_s11113-021-09646-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.