IDEAS home Printed from https://ideas.repec.org/a/kap/netspa/v11y2011i2p207-232.html
   My bibliography  Save this article

Detecting Braess Paradox Based on Stable Dynamics in General Congested Transportation Networks

Author

Listed:
  • Koohyun Park

Abstract

No abstract is available for this item.

Suggested Citation

  • Koohyun Park, 2011. "Detecting Braess Paradox Based on Stable Dynamics in General Congested Transportation Networks," Networks and Spatial Economics, Springer, vol. 11(2), pages 207-232, June.
  • Handle: RePEc:kap:netspa:v:11:y:2011:i:2:p:207-232
    DOI: 10.1007/s11067-009-9101-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11067-009-9101-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11067-009-9101-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Patrick T. Harker, 1988. "Multiple Equilibrium Behaviors on Networks," Transportation Science, INFORMS, vol. 22(1), pages 39-46, February.
    2. Devarajan, Shantayanan, 1981. "A note of network equilibrium and noncooperative games," Transportation Research Part B: Methodological, Elsevier, vol. 15(6), pages 421-426, December.
    3. Dietrich Braess & Anna Nagurney & Tina Wakolbinger, 2005. "On a Paradox of Traffic Planning," Transportation Science, INFORMS, vol. 39(4), pages 446-450, November.
    4. Akamatsu, Takashi, 2000. "A dynamic traffic equilibrium assignment paradox," Transportation Research Part B: Methodological, Elsevier, vol. 34(6), pages 515-531, August.
    5. A. de Palma & Y. Nesterov, 2001. "Stationary Dynamic Solutions in Congested Transportation Networks: Summary and Perspectives," THEMA Working Papers 2001-19, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    6. Dafermos, Stella & Nagurney, Anna, 1984. "On some traffic equilibrium theory paradoxes," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 101-110, April.
    7. NESTEROV, Yu., 2000. "Stable traffic equilibria: properties and applications," LIDAM Reprints CORE 1470, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Fisk, Caroline, 1979. "More paradoxes in the equilibrium assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 13(4), pages 305-309, December.
    9. Richard Steinberg & Willard I. Zangwill, 1983. "The Prevalence of Braess' Paradox," Transportation Science, INFORMS, vol. 17(3), pages 301-318, August.
    10. Takashi Akamatsu & Benjamin Heydecker, 2003. "Detecting Dynamic Traffic Assignment Capacity Paradoxes in Saturated Networks," Transportation Science, INFORMS, vol. 37(2), pages 123-138, May.
    11. Yang, Hai & Bell, Michael G. H., 1998. "A capacity paradox in network design and how to avoid it," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(7), pages 539-545, September.
    12. David Bernstein & Tony E. Smith, 1994. "Equilibria for Networks with Lower Semicontinuous Costs: With an Application to Congestion Pricing," Transportation Science, INFORMS, vol. 28(3), pages 221-235, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di, Xuan & He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2014. "Braess paradox under the boundedly rational user equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 86-108.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di, Xuan & He, Xiaozheng & Guo, Xiaolei & Liu, Henry X., 2014. "Braess paradox under the boundedly rational user equilibria," Transportation Research Part B: Methodological, Elsevier, vol. 67(C), pages 86-108.
    2. Takashi Akamatsu & Benjamin Heydecker, 2003. "Detecting Dynamic Traffic Assignment Capacity Paradoxes in Saturated Networks," Transportation Science, INFORMS, vol. 37(2), pages 123-138, May.
    3. Wei-Hua Lin & Hong K. Lo, 2009. "Investigating Braess' Paradox with Time-Dependent Queues," Transportation Science, INFORMS, vol. 43(1), pages 117-126, February.
    4. Yao, Jia & Chen, Anthony, 2014. "An analysis of logit and weibit route choices in stochastic assignment paradox," Transportation Research Part B: Methodological, Elsevier, vol. 69(C), pages 31-49.
    5. Zhao, Chunxue & Fu, Baibai & Wang, Tianming, 2014. "Braess paradox and robustness of traffic networks under stochastic user equilibrium," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 135-141.
    6. Shanjiang Zhu & David Levinson & Henry Liu, 2017. "Measuring winners and losers from the new I-35W Mississippi River Bridge," Transportation, Springer, vol. 44(5), pages 905-918, September.
    7. Bittihn, Stefan & Schadschneider, Andreas, 2021. "The effect of modern traffic information on Braess’ paradox," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 571(C).
    8. Yao, Jia & Huang, Wenhua & Chen, Anthony & Cheng, Zhanhong & An, Shi & Xu, Guangming, 2019. "Paradox links can improve system efficiency: An illustration in traffic assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 35-49.
    9. Pas, Eric I. & Principio, Shari L., 1997. "Braess' paradox: Some new insights," Transportation Research Part B: Methodological, Elsevier, vol. 31(3), pages 265-276, June.
    10. Michael Patriksson, 2004. "Sensitivity Analysis of Traffic Equilibria," Transportation Science, INFORMS, vol. 38(3), pages 258-281, August.
    11. Wang, Wei (Walker) & Wang, David Z.W. & Zhang, Fangni & Sun, Huijun & Zhang, Wenyi & Wu, Jianjun, 2017. "Overcoming the Downs-Thomson Paradox by transit subsidy policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 95(C), pages 126-147.
    12. Wang, Tao & Liao, Peng & Tang, Tie-Qiao & Huang, Hai-Jun, 2022. "Deterministic capacity drop and morning commute in traffic corridor with tandem bottlenecks: A new manifestation of capacity expansion paradox," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    13. (Walker) Wang, Wei & Wang, David Z.W. & Sun, Huijun & Feng, Zengzhe & Wu, Jianjun, 2016. "Braess Paradox of traffic networks with mixed equilibrium behaviors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 95-114.
    14. repec:wsi:jeapmx:v:20:y:2018:i:04:n:s0219198918500068 is not listed on IDEAS
    15. Liu, Zhaocai & Chen, Zhibin & He, Yi & Song, Ziqi, 2021. "Network user equilibrium problems with infrastructure-enabled autonomy," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 207-241.
    16. Yang, Chao & Chen, Anthony, 2009. "Sensitivity analysis of the combined travel demand model with applications," European Journal of Operational Research, Elsevier, vol. 198(3), pages 909-921, November.
    17. Hugo E. Silva & Robin Lindsey & André de Palma & Vincent A. C. van den Berg, 2017. "On the Existence and Uniqueness of Equilibrium in the Bottleneck Model with Atomic Users," Transportation Science, INFORMS, vol. 51(3), pages 863-881, August.
    18. Roberto Cominetti & José R. Correa & Nicolás E. Stier-Moses, 2009. "The Impact of Oligopolistic Competition in Networks," Operations Research, INFORMS, vol. 57(6), pages 1421-1437, December.
    19. Bittihn, Stefan & Schadschneider, Andreas, 2018. "Braess paradox in a network with stochastic dynamics and fixed strategies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 133-152.
    20. Xiaoning Zhang & H. Zhang, 2010. "Simultaneous Departure Time/Route Choices in Queuing Networks and a Novel Paradox," Networks and Spatial Economics, Springer, vol. 10(1), pages 93-112, March.
    21. Wada, Kentaro & Satsukawa, Koki & Smith, Mike & Akamatsu, Takashi, 2019. "Network throughput under dynamic user equilibrium: Queue spillback, paradox and traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 391-413.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:netspa:v:11:y:2011:i:2:p:207-232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.