Advanced Search
MyIDEAS: Login to save this article or follow this journal

Estimating production frontiers and efficiency when output is a discretely distributed economic bad

Contents:

Author Info

  • Eduardo Fé

    ()

Abstract

This article studies the estimation of production frontiers and efficiency scores when the commodity of interest is an economic bad with a discrete distribution. Existing parametric econometric techniques (stochastic frontier methods) assume that output is a continuous random variable but, if output is discretely distributed, then one faces a scenario of model misspecification. Therefore a new class of econometric models has been developed to overcome this problem. The Delaporte subclass of models is studied in detail, and tests of hypotheses are proposed to discriminate among parametric models. In particular, Pearson’s chi-squared test is adapted to construct a new kernel-based consistent Pearson test. A Monte Carlo experiment evaluates the merits of the new model and methods, and these are used to estimate the frontier and efficiency scores of the production of infant deaths in England. Extensions to the model are discussed. Copyright Springer Science+Business Media, LLC 2013

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://hdl.handle.net/10.1007/s11123-012-0287-x
Download Restriction: Access to full text is restricted to subscribers.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Springer in its journal Journal of Productivity Analysis.

Volume (Year): 39 (2013)
Issue (Month): 3 (June)
Pages: 285-302

as in new window
Handle: RePEc:kap:jproda:v:39:y:2013:i:3:p:285-302

Contact details of provider:
Web page: http://www.springerlink.com/link.asp?id=100296

Related research

Keywords: Stochastic frontier; Delaporte distribution; Consistent misspecification test; Local likelihood; Pearson’s chi-square tests; Infant deaths; C01; C12; C13; C14; C16; C25; C46; C51; C52;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Park, Byeong & Simar, Leopold & Zelenyuk, Valentin, 2006. "Local likelihood estimation of truncated regression and its partial derivatives: theory and application," MPRA Paper 34686, University Library of Munich, Germany.
  2. Andrews, Donald W K, 1988. "Chi-Square Diagnostic Tests for Econometric Models: Theory," Econometrica, Econometric Society, vol. 56(6), pages 1419-53, November.
  3. John Xu Zheng, 1996. "A consistent test of functional form via nonparametric estimation techniques," Journal of Econometrics, Elsevier, vol. 75(2), pages 263-289, December.
  4. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
  5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, April.
  6. Kumbhakar, Subal C. & Park, Byeong U. & Simar, Leopold & Tsionas, Efthymios G., 2007. "Nonparametric stochastic frontiers: A local maximum likelihood approach," Journal of Econometrics, Elsevier, vol. 137(1), pages 1-27, March.
  7. Greene, William H., 1990. "A Gamma-distributed stochastic frontier model," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 141-163.
  8. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
  9. Grossman, Michael, 1972. "On the Concept of Health Capital and the Demand for Health," Journal of Political Economy, University of Chicago Press, vol. 80(2), pages 223-55, March-Apr.
  10. Goffe, William L. & Ferrier, Gary D. & Rogers, John, 1994. "Global optimization of statistical functions with simulated annealing," Journal of Econometrics, Elsevier, vol. 60(1-2), pages 65-99.
  11. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-33, March.
  12. Kumbhakar,Subal C. & Lovell,C. A. Knox, 2003. "Stochastic Frontier Analysis," Cambridge Books, Cambridge University Press, number 9780521666633, April.
  13. Li, Q. & Wang, Suojin, 1998. "A simple consistent bootstrap test for a parametric regression function," Journal of Econometrics, Elsevier, vol. 87(1), pages 145-165, August.
  14. William Greene, 2003. "Distinguishing Between Heterogeneity and Inefficiency: Stochastic Frontier Analysis of the World Health Organization’s Panel Data on National Health Care Systems," Working Papers 03-10, New York University, Leonard N. Stern School of Business, Department of Economics.
  15. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-44, June.
  16. Andrews, Donald W. K., 1988. "Chi-square diagnostic tests for econometric models : Introduction and applications," Journal of Econometrics, Elsevier, vol. 37(1), pages 135-156, January.
  17. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
  18. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
  19. Newey, Whitney K, 1985. "Maximum Likelihood Specification Testing and Conditional Moment Tests," Econometrica, Econometric Society, vol. 53(5), pages 1047-70, September.
  20. Jondrow, James & Knox Lovell, C. A. & Materov, Ivan S. & Schmidt, Peter, 1982. "On the estimation of technical inefficiency in the stochastic frontier production function model," Journal of Econometrics, Elsevier, vol. 19(2-3), pages 233-238, August.
  21. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:39:y:2013:i:3:p:285-302. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Guenther Eichhorn) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.