IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v57y2021i4d10.1007_s10614-020-10002-8.html
   My bibliography  Save this article

Variance Swaps with Deterministic and Stochastic Correlations

Author

Listed:
  • Ah-Reum Han

    (Yonsei University)

  • Jeong-Hoon Kim

    (Yonsei University)

  • See-Woo Kim

    (Yonsei University)

Abstract

As market observations say that many financial quantities are correlated in a time dependent, nonlinear or unpredictable way, in this study, we present an approach to price discretely sampled variance swaps based on the Heston model extended by incorporating deterministic or stochastic correlation between an underlying asset and its variance. We obtain a closed form exact formula for the fair delivery prices under the deterministic correlation model and an affine approximation formula under the stochastic correlation model. A comparison with Monte–Carlo simulations supports the validity of the pricing formulas. Based on the analytic results, we find that the fair delivery price increases as time to maturity or leverage effect increases or sampling frequency decreases. On the other hand, the impact scale of the correlation volatility is so imperceptible that the time dependent deterministic correlation model can still be a good proxy of the stochastic correlation environment in the case of variance swap pricing, while the approximation formula with the stochastic correlation is better than the exact formula with the deterministic correlation in computing sense.

Suggested Citation

  • Ah-Reum Han & Jeong-Hoon Kim & See-Woo Kim, 2021. "Variance Swaps with Deterministic and Stochastic Correlations," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1059-1092, April.
  • Handle: RePEc:kap:compec:v:57:y:2021:i:4:d:10.1007_s10614-020-10002-8
    DOI: 10.1007/s10614-020-10002-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-020-10002-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-020-10002-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Damir Filipovic & Damien Ackerer & Sergio Pulido, 2018. "The Jacobi Stochastic Volatility Model," Post-Print hal-01338330, HAL.
    2. Windcliff, H. & Forsyth, P.A. & Vetzal, K.R., 2006. "Pricing methods and hedging strategies for volatility derivatives," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 409-431, February.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Sam Howison & Avraam Rafailidis & Henrik Rasmussen, 2004. "On the pricing and hedging of volatility derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(4), pages 317-346.
    5. Alireza Javaheri & Paul Wilmott & Espen Haug, 2004. "GARCH and Volatility swaps," Quantitative Finance, Taylor & Francis Journals, vol. 4(5), pages 589-595.
    6. Damien Ackerer & Damir Filipovi'c & Sergio Pulido, 2016. "The Jacobi Stochastic Volatility Model," Papers 1605.07099, arXiv.org, revised Mar 2018.
    7. Long Teng & Matthias Ehrhardt & Michael Günther, 2016. "On The Heston Model With Stochastic Correlation," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(06), pages 1-25, September.
    8. Grunbichler, Andreas & Longstaff, Francis A., 1996. "Valuing futures and options on volatility," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 985-1001, July.
    9. Mark Broadie & Ashish Jain, 2008. "The Effect Of Jumps And Discrete Sampling On Volatility And Variance Swaps," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(08), pages 761-797.
    10. Peter Carr & Roger Lee, 2009. "Volatility Derivatives," Annual Review of Financial Economics, Annual Reviews, vol. 1(1), pages 319-339, November.
    11. Wendong Zheng & Yue Kuen Kwok, 2014. "Closed Form Pricing Formulas For Discretely Sampled Generalized Variance Swaps," Mathematical Finance, Wiley Blackwell, vol. 24(4), pages 855-881, October.
    12. Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well," Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
    13. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    14. Cao, Jiling & Lian, Guanghua & Roslan, Teh Raihana Nazirah, 2016. "Pricing variance swaps under stochastic volatility and stochastic interest rate," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 72-81.
    15. Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
    16. Robert Elliott & Tak Kuen Siu & Leunglung Chan, 2007. "Pricing Volatility Swaps Under Heston's Stochastic Volatility Model with Regime Switching," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 41-62.
    17. Damien Ackerer & Damir Filipović & Sergio Pulido, 2018. "The Jacobi stochastic volatility model," Finance and Stochastics, Springer, vol. 22(3), pages 667-700, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Song-Ping & Lian, Guang-Hua, 2015. "Pricing forward-start variance swaps with stochastic volatility," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 920-933.
    2. Ben-zhang Yang & Jia Yue & Nan-jing Huang, 2017. "Variance swaps under L\'{e}vy process with stochastic volatility and stochastic interest rate in incomplete markets," Papers 1712.10105, arXiv.org, revised Mar 2018.
    3. Lian, Guanghua & Chiarella, Carl & Kalev, Petko S., 2014. "Volatility swaps and volatility options on discretely sampled realized variance," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 239-262.
    4. Min-Ku Lee & See-Woo Kim & Jeong-Hoon Kim, 2022. "Variance Swaps Under Multiscale Stochastic Volatility of Volatility," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 39-64, March.
    5. Ben-Zhang Yang & Jia Yue & Nan-Jing Huang, 2019. "Equilibrium Price Of Variance Swaps Under Stochastic Volatility With Lévy Jumps And Stochastic Interest Rate," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-33, June.
    6. Yang, Ben-Zhang & Yue, Jia & Wang, Ming-Hui & Huang, Nan-Jing, 2019. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 73-84.
    7. Weiyi Liu & Song‐Ping Zhu, 2019. "Pricing variance swaps under the Hawkes jump‐diffusion process," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 635-655, June.
    8. Kim, See-Woo & Kim, Jeong-Hoon, 2018. "Analytic solutions for variance swaps with double-mean-reverting volatility," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 130-144.
    9. Kim, See-Woo & Kim, Jeong-Hoon, 2019. "Variance swaps with double exponential Ornstein-Uhlenbeck stochastic volatility," The North American Journal of Economics and Finance, Elsevier, vol. 48(C), pages 149-169.
    10. Cao, Jiling & Lian, Guanghua & Roslan, Teh Raihana Nazirah, 2016. "Pricing variance swaps under stochastic volatility and stochastic interest rate," Applied Mathematics and Computation, Elsevier, vol. 277(C), pages 72-81.
    11. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2017. "A general framework for discretely sampled realized variance derivatives in stochastic volatility models with jumps," European Journal of Operational Research, Elsevier, vol. 262(1), pages 381-400.
    12. Anatoliy Swishchuk, 2013. "Modeling and Pricing of Swaps for Financial and Energy Markets with Stochastic Volatilities," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8660, January.
    13. Teh Raihana Nazirah Roslan & Wenjun Zhang & Jiling Cao, 2016. "Pricing variance swaps with stochastic volatility and stochastic interest rate under full correlation structure," Papers 1610.09714, arXiv.org, revised Apr 2020.
    14. Kim, See-Woo & Kim, Jeong-Hoon, 2020. "Pricing generalized variance swaps under the Heston model with stochastic interest rates," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 168(C), pages 1-27.
    15. Youngin Yoon & Jeong-Hoon Kim, 2023. "A Closed Form Solution for Pricing Variance Swaps Under the Rescaled Double Heston Model," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 429-450, January.
    16. Song-Ping Zhu & Guang-Hua Lian, 2018. "On the Convexity Correction Approximation in Pricing Volatility Swaps and VIX Futures," New Mathematics and Natural Computation (NMNC), World Scientific Publishing Co. Pte. Ltd., vol. 14(03), pages 383-401, November.
    17. Ben-zhang Yang & Jia Yue & Ming-hui Wang & Nan-jing Huang, 2018. "Volatility swaps valuation under stochastic volatility with jumps and stochastic intensity," Papers 1805.06226, arXiv.org, revised May 2018.
    18. Tong, Zhigang & Liu, Allen, 2022. "Pricing variance swaps under subordinated Jacobi stochastic volatility models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 593(C).
    19. Pierre-Edouard Arrouy & Sophian Mehalla & Bernard Lapeyre & Alexandre Boumezoued, 2020. "Jacobi Stochastic Volatility factor for the Libor Market Model," Working Papers hal-02468583, HAL.
    20. Pierre-Edouard Arrouy & Alexandre Boumezoued & Bernard Lapeyre & Sophian Mehalla, 2022. "Jacobi stochastic volatility factor for the LIBOR market model," Finance and Stochastics, Springer, vol. 26(4), pages 771-823, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:57:y:2021:i:4:d:10.1007_s10614-020-10002-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.