IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v56y2020i4d10.1007_s10614-019-09927-6.html
   My bibliography  Save this article

The Use of Partial Fractional Form of A-Stable Padé Schemes for the Solution of Fractional Diffusion Equation with Application in Option Pricing

Author

Listed:
  • H. Ghafouri

    (Azarbaijan Shahid Madani University)

  • M. Ranjbar

    (Azarbaijan Shahid Madani University)

  • A. Khani

    (Azarbaijan Shahid Madani University)

Abstract

In this work, we propose a numerical technique based on the Padé scheme for solving the two-sided space-fractional diffusion equation. First, space fractional diffusion equations are approximated with respect to space variable. We will achieve a system of ODE. Then by applying a parallel implementation of the A-stable methods, this system is solved. Also, we use of the presented method for pricing European call option under a geometric Lévy process. Illustrative examples are included to show the accuracy and applicability of the new technique presented in the current paper.

Suggested Citation

  • H. Ghafouri & M. Ranjbar & A. Khani, 2020. "The Use of Partial Fractional Form of A-Stable Padé Schemes for the Solution of Fractional Diffusion Equation with Application in Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 56(4), pages 695-709, December.
  • Handle: RePEc:kap:compec:v:56:y:2020:i:4:d:10.1007_s10614-019-09927-6
    DOI: 10.1007/s10614-019-09927-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-019-09927-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-019-09927-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dehestani, H. & Ordokhani, Y. & Razzaghi, M., 2018. "Fractional-order Legendre–Laguerre functions and their applications in fractional partial differential equations," Applied Mathematics and Computation, Elsevier, vol. 336(C), pages 433-453.
    2. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-777, April.
    3. Liu, Q. & Liu, F. & Gu, Y.T. & Zhuang, P. & Chen, J. & Turner, I., 2015. "A meshless method based on Point Interpolation Method (PIM) for the space fractional diffusion equation," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 930-938.
    4. Cartea, Álvaro & del-Castillo-Negrete, Diego, 2007. "Fractional diffusion models of option prices in markets with jumps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 374(2), pages 749-763.
    5. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
    6. Peter Carr & Liuren Wu, 2003. "The Finite Moment Log Stable Process and Option Pricing," Journal of Finance, American Finance Association, vol. 58(2), pages 753-778, April.
    7. Saberi Zafarghandi, Fahimeh & Mohammadi, Maryam & Babolian, Esmail & Javadi, Shahnam, 2019. "Radial basis functions method for solving the fractional diffusion equations," Applied Mathematics and Computation, Elsevier, vol. 342(C), pages 224-246.
    8. Khaliq, A.Q.M. & Voss, D.A. & Yousuf, M., 2007. "Pricing exotic options with L-stable Pade schemes," Journal of Banking & Finance, Elsevier, vol. 31(11), pages 3438-3461, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meihui Zhang & Xiangcheng Zheng, 2023. "Numerical Approximation to a Variable-Order Time-Fractional Black–Scholes Model with Applications in Option Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1155-1175, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu Guo & Yutian Li, 2016. "Valuation of American options under the CGMY model," Quantitative Finance, Taylor & Francis Journals, vol. 16(10), pages 1529-1539, October.
    2. Y. Esmaeelzade Aghdam & H. Mesgarani & A. Adl & B. Farnam, 2023. "The Convergence Investigation of a Numerical Scheme for the Tempered Fractional Black-Scholes Model Arising European Double Barrier Option," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 513-528, February.
    3. Jean-Philippe Aguilar & Jan Korbel & Nicolas Pesci, 2021. "On the Quantitative Properties of Some Market Models Involving Fractional Derivatives," Mathematics, MDPI, vol. 9(24), pages 1-24, December.
    4. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    5. Wenting Chen & Kai Du & Xinzi Qiu, 2017. "Analytic properties of American option prices under a modified Black-Scholes equation with spatial fractional derivatives," Papers 1701.01515, arXiv.org.
    6. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2020. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Papers 2006.15312, arXiv.org, revised May 2022.
    7. Markus Leippold & Nikola Vasiljević, 2020. "Option-Implied Intrahorizon Value at Risk," Management Science, INFORMS, vol. 66(1), pages 397-414, January.
    8. Bakshi, Gurdip & Panayotov, George, 2010. "First-passage probability, jump models, and intra-horizon risk," Journal of Financial Economics, Elsevier, vol. 95(1), pages 20-40, January.
    9. Feng, Chengxiao & Tan, Jie & Jiang, Zhenyu & Chen, Shuang, 2020. "A generalized European option pricing model with risk management," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    10. Jingzhi Huang & Liuren Wu, 2004. "Specification Analysis of Option Pricing Models Based on Time- Changed Levy Processes," Finance 0401002, University Library of Munich, Germany.
    11. Young Shin Kim & Kum-Hwan Roh & Raphael Douady, 2022. "Tempered stable processes with time-varying exponential tails," Quantitative Finance, Taylor & Francis Journals, vol. 22(3), pages 541-561, March.
    12. Chang, Lung-fu & Hung, Mao-wei, 2009. "Analytical valuation of catastrophe equity options with negative exponential jumps," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 59-69, February.
    13. Alvaro Cartea, 2005. "Dynamic Hedging of Financial Instruments When the Underlying Follows a Non-Gaussian Process," Birkbeck Working Papers in Economics and Finance 0508, Birkbeck, Department of Economics, Mathematics & Statistics.
    14. Sun, Qi & Xu, Weidong, 2015. "Pricing foreign equity option with stochastic volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 437(C), pages 89-100.
    15. Carr, Peter & Wu, Liuren, 2007. "Stochastic skew in currency options," Journal of Financial Economics, Elsevier, vol. 86(1), pages 213-247, October.
    16. Jiling Cao & Xinfeng Ruan & Shu Su & Wenjun Zhang, 2021. "Specification analysis of VXX option pricing models under Lévy processes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(9), pages 1456-1477, September.
    17. Jean-Philippe Aguilar, 2021. "The value of power-related options under spectrally negative Lévy processes," Review of Derivatives Research, Springer, vol. 24(2), pages 173-196, July.
    18. Cao, Wenbin & Guernsey, Scott B. & Linn, Scott C., 2018. "Evidence of infinite and finite jump processes in commodity futures prices: Crude oil and natural gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 629-641.
    19. Bakshi, Gurdip & Carr, Peter & Wu, Liuren, 2008. "Stochastic risk premiums, stochastic skewness in currency options, and stochastic discount factors in international economies," Journal of Financial Economics, Elsevier, vol. 87(1), pages 132-156, January.
    20. Jakša Cvitanić & Vassilis Polimenis & Fernando Zapatero, 2008. "Optimal portfolio allocation with higher moments," Annals of Finance, Springer, vol. 4(1), pages 1-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:56:y:2020:i:4:d:10.1007_s10614-019-09927-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.