IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v52y2018i1d10.1007_s10614-017-9669-5.html
   My bibliography  Save this article

An Efficient Adaptive Real Coded Genetic Algorithm to Solve the Portfolio Choice Problem Under Cumulative Prospect Theory

Author

Listed:
  • Chao Gong

    (Chiba Institute of Technology)

  • Chunhui Xu

    (Chiba Institute of Technology)

  • Ji Wang

    (Chiba Institute of Technology)

Abstract

Cumulative prospect theory (CPT) has become one of the most popular approaches for evaluating the behavior of decision makers under conditions of uncertainty. Substantial experimental evidence suggests that human behavior may significantly deviate from the traditional expected utility maximization framework when faced with uncertainty. The problem of portfolio selection should be revised when the investor’s preference is for CPT instead of expected utility theory. However, because of the complexity of the CPT function, little research has investigated the portfolio choice problem based on CPT. In this paper, we present an operational model for portfolio selection under CPT, and propose a real-coded genetic algorithm (RCGA) to solve the problem of portfolio choice. To overcome the limitations of RCGA and improve its performance, we introduce an adaptive method and propose a new selection operator. Computational results show that the proposed method is a rapid, effective, and stable genetic algorithm.

Suggested Citation

  • Chao Gong & Chunhui Xu & Ji Wang, 2018. "An Efficient Adaptive Real Coded Genetic Algorithm to Solve the Portfolio Choice Problem Under Cumulative Prospect Theory," Computational Economics, Springer;Society for Computational Economics, vol. 52(1), pages 227-252, June.
  • Handle: RePEc:kap:compec:v:52:y:2018:i:1:d:10.1007_s10614-017-9669-5
    DOI: 10.1007/s10614-017-9669-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10614-017-9669-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10614-017-9669-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ulrich Schmidt & Horst Zank, 2008. "Risk Aversion in Cumulative Prospect Theory," Management Science, INFORMS, vol. 54(1), pages 208-216, January.
    2. Stracca, Livio, 2002. "The optimal allocation of risks under prospect theory," Working Paper Series 161, European Central Bank.
    3. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    4. Han Bleichrodt & Jose Luis Pinto, 2000. "A Parameter-Free Elicitation of the Probability Weighting Function in Medical Decision Analysis," Management Science, INFORMS, vol. 46(11), pages 1485-1496, November.
    5. Luce, R. Duncan, 1991. "Rank- and sign-dependent linear utility models for binary gambles," Journal of Economic Theory, Elsevier, vol. 53(1), pages 75-100, February.
    6. Daniel Ellsberg, 2000. "Risk, Ambiguity and the Savage Axioms," Levine's Working Paper Archive 7605, David K. Levine.
    7. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    8. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    9. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    10. Camerer, Colin F & Ho, Teck-Hua, 1994. "Violations of the Betweenness Axiom and Nonlinearity in Probability," Journal of Risk and Uncertainty, Springer, vol. 8(2), pages 167-196, March.
    11. Haim Levy, 2004. "Prospect Theory and Mean-Variance Analysis," The Review of Financial Studies, Society for Financial Studies, vol. 17(4), pages 1015-1041.
    12. Fennema, Hein & van Assen, Marcel, 1998. "Measuring the Utility of Losses by Means of the Tradeoff Method," Journal of Risk and Uncertainty, Springer, vol. 17(3), pages 277-295, December.
    13. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    14. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    15. Samuelson, William & Zeckhauser, Richard, 1988. "Status Quo Bias in Decision Making," Journal of Risk and Uncertainty, Springer, vol. 1(1), pages 7-59, March.
    16. Nicholas Barberis & Ming Huang & Tano Santos, "undated". "Prospect Theory and Asset Prices," CRSP working papers 494, Center for Research in Security Prices, Graduate School of Business, University of Chicago.
    17. Chelouah, Rachid & Siarry, Patrick, 2003. "Genetic and Nelder-Mead algorithms hybridized for a more accurate global optimization of continuous multiminima functions," European Journal of Operational Research, Elsevier, vol. 148(2), pages 335-348, July.
    18. Shlomo Benartzi & Richard H. Thaler, 1995. "Myopic Loss Aversion and the Equity Premium Puzzle," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 110(1), pages 73-92.
    19. Serge Blondel, 2002. "Testing Theories of Choice Under Risk: Estimation of Individual Functionals," Journal of Risk and Uncertainty, Springer, vol. 24(3), pages 251-265, May.
    20. Grüne, Lars & Semmler, Willi, 2008. "Asset pricing with loss aversion," Journal of Economic Dynamics and Control, Elsevier, vol. 32(10), pages 3253-3274, October.
    21. Luis A.G. Coelho, 2014. "Portfolio Selection Optimization under Cumulative Prospect Theory – a parameter sensibility analysis," CEFAGE-UE Working Papers 2014_06, University of Evora, CEFAGE-UE (Portugal).
    22. Birnbaum, Michael H. & Chavez, Alfredo, 1997. "Tests of Theories of Decision Making: Violations of Branch Independence and Distribution Independence," Organizational Behavior and Human Decision Processes, Elsevier, vol. 71(2), pages 161-194, August.
    23. Chueh-Yung Tsao, 2010. "Portfolio selection based on the mean-VaR efficient frontier," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 931-945.
    24. Nicholas Barberis & Ming Huang & Richard H. Thaler, 2006. "Individual Preferences, Monetary Gambles, and Stock Market Participation: A Case for Narrow Framing," American Economic Review, American Economic Association, vol. 96(4), pages 1069-1090, September.
    25. Subbaraj, P. & Rengaraj, R. & Salivahanan, S., 2009. "Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm," Applied Energy, Elsevier, vol. 86(6), pages 915-921, June.
    26. Blondel, Serge, 2002. "Testing Theories of Choice under Risk: Estimation of Individual Functionals," Journal of Risk and Uncertainty, Springer, vol. 24(3), pages 251-265, May.
    27. J. Baixauli-Soler & Eva Alfaro-Cid & Matilde Fernandez-Blanco, 2011. "Mean-VaR Portfolio Selection Under Real Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 113-131, February.
    28. Wenbo Hu & Alec Kercheval, 2010. "Portfolio optimization for student t and skewed t returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 91-105.
    29. George Wu & Richard Gonzalez, 1996. "Curvature of the Probability Weighting Function," Management Science, INFORMS, vol. 42(12), pages 1676-1690, December.
    30. Bernard, Carole & Ghossoub, Mario, 2009. "Static Portfolio Choice under Cumulative Prospect Theory," MPRA Paper 15446, University Library of Munich, Germany.
    31. Enrico Giorgi & Thorsten Hens & János Mayer, 2007. "Computational aspects of prospect theory with asset pricing applications," Computational Economics, Springer;Society for Computational Economics, vol. 29(3), pages 267-281, May.
    32. Luce, R Duncan & Fishburn, Peter C, 1991. "Rank- and Sign-Dependent Linear Utility Models for Finite First-Order Gambles," Journal of Risk and Uncertainty, Springer, vol. 4(1), pages 29-59, January.
    33. Kaelo, P. & Ali, M.M., 2007. "Integrated crossover rules in real coded genetic algorithms," European Journal of Operational Research, Elsevier, vol. 176(1), pages 60-76, January.
    34. Nicholas C. Barberis, 2013. "Thirty Years of Prospect Theory in Economics: A Review and Assessment," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 173-196, Winter.
    35. Jonathan Ingersoll, 2008. "Non‐Monotonicity of the Tversky‐Kahneman Probability‐Weighting Function: A Cautionary Note," European Financial Management, European Financial Management Association, vol. 14(3), pages 385-390, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ameer Tamoor Khan & Xinwei Cao & Shuai Li, 2023. "Using Quadratic Interpolated Beetle Antennae Search for Higher Dimensional Portfolio Selection Under Cardinality Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1413-1435, December.
    2. Wencheng Yu & Shaobo Liu & Lili Ding, 2021. "Efficiency Evaluation and Selection Strategies for Green Portfolios under Different Risk Appetites," Sustainability, MDPI, vol. 13(4), pages 1-15, February.
    3. Massimiliano Kaucic & Filippo Piccotto & Gabriele Sbaiz & Giorgio Valentinuz, 2023. "Optimal Portfolio with Sustainable Attitudes under Cumulative Prospect Theory," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 13(4), pages 1-4.
    4. Martín Egozcue & Luis Fuentes García & Ričardas Zitikis, 2023. "The Slicing Method: Determining Insensitivity Regions of Probability Weighting Functions," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1369-1402, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    2. De Giorgi, Enrico G. & Legg, Shane, 2012. "Dynamic portfolio choice and asset pricing with narrow framing and probability weighting," Journal of Economic Dynamics and Control, Elsevier, vol. 36(7), pages 951-972.
    3. Henry Stott, 2006. "Cumulative prospect theory's functional menagerie," Journal of Risk and Uncertainty, Springer, vol. 32(2), pages 101-130, March.
    4. Arjun Chatrath & Rohan A. Christie‐David & Hong Miao & Sanjay Ramchander, 2019. "Losers and prospectors in the short‐term options market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(6), pages 721-743, June.
    5. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    6. Horst Zank, 2010. "On probabilities and loss aversion," Theory and Decision, Springer, vol. 68(3), pages 243-261, March.
    7. Peter Brooks & Horst Zank, 2005. "Loss Averse Behavior," Journal of Risk and Uncertainty, Springer, vol. 31(3), pages 301-325, December.
    8. Aurélien Baillon & Han Bleichrodt & Vitalie Spinu, 2020. "Searching for the Reference Point," Management Science, INFORMS, vol. 66(1), pages 93-112, January.
    9. Ulrich Schmidt & Chris Starmer & Robert Sugden, 2008. "Third-generation prospect theory," Journal of Risk and Uncertainty, Springer, vol. 36(3), pages 203-223, June.
    10. Aurélien Baillon & Han Bleichrodt & Vitalie Spinu, 2020. "Searching for the Reference Point," Management Science, INFORMS, vol. 66(1), pages 93-112, January.
    11. Neszveda, G., 2019. "Essays on behavioral finance," Other publications TiSEM 05059039-5236-42a3-be1b-3, Tilburg University, School of Economics and Management.
    12. Michael H. Birnbaum & Ulrich Schmidt & Miriam D. Schneider, 2017. "Testing independence conditions in the presence of errors and splitting effects," Journal of Risk and Uncertainty, Springer, vol. 54(1), pages 61-85, February.
    13. Davies, G.B. & Satchell, S.E., 2004. "Continuous Cumulative Prospect Theory and Individual Asset Allocation," Cambridge Working Papers in Economics 0467, Faculty of Economics, University of Cambridge.
    14. Daniel Cavagnaro & Mark Pitt & Richard Gonzalez & Jay Myung, 2013. "Discriminating among probability weighting functions using adaptive design optimization," Journal of Risk and Uncertainty, Springer, vol. 47(3), pages 255-289, December.
    15. George Wu & Jiao Zhang & Mohammed Abdellaoui, 2005. "Testing Prospect Theories Using Probability Tradeoff Consistency," Journal of Risk and Uncertainty, Springer, vol. 30(2), pages 107-131, January.
    16. Glenn W. Harrison & J. Todd Swarthout, 2016. "Cumulative Prospect Theory in the Laboratory: A Reconsideration," Experimental Economics Center Working Paper Series 2016-04, Experimental Economics Center, Andrew Young School of Policy Studies, Georgia State University.
    17. Xue Dong He & Xun Yu Zhou, 2011. "Portfolio Choice Under Cumulative Prospect Theory: An Analytical Treatment," Management Science, INFORMS, vol. 57(2), pages 315-331, February.
    18. Mohammed Abdellaoui & Olivier L’Haridon & Horst Zank, 2010. "Separating curvature and elevation: A parametric probability weighting function," Journal of Risk and Uncertainty, Springer, vol. 41(1), pages 39-65, August.
    19. Birnbaum, Michael H. & Zimmermann, Jacqueline M., 1998. "Buying and Selling Prices of Investments: Configural Weight Model of Interactions Predicts Violations of Joint Independence," Organizational Behavior and Human Decision Processes, Elsevier, vol. 74(2), pages 145-187, May.
    20. Stephen G Dimmock & Roy Kouwenberg & Olivia S Mitchell & Kim Peijnenburg, 2021. "Household Portfolio Underdiversification and Probability Weighting: Evidence from the Field," The Review of Financial Studies, Society for Financial Studies, vol. 34(9), pages 4524-4563.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:52:y:2018:i:1:d:10.1007_s10614-017-9669-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.