IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v54y2020i4p1053-1072.html
   My bibliography  Save this article

Vehicle Routing Problems with Synchronized Visits and Stochastic Travel and Service Times: Applications in Healthcare

Author

Listed:
  • Hossein Hashemi Doulabi

    (Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, Quebec H3G 1M8, Canada; Interuniversity Research Center on Enterprise Networks, Logistics and Transportation, Montreal, Quebec H3C 3J7, Canada;)

  • Gilles Pesant

    (Interuniversity Research Center on Enterprise Networks, Logistics and Transportation, Montreal, Quebec H3C 3J7, Canada; Department of Computer and Software Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada;)

  • Louis-Martin Rousseau

    (Interuniversity Research Center on Enterprise Networks, Logistics and Transportation, Montreal, Quebec H3C 3J7, Canada; Department of Mathematics and Industrial Engineering, Polytechnique Montreal, Montreal, Quebec H3T 1J4, Canada)

Abstract

This paper, for the first time, studies vehicle routing problems with synchronized visits (VRPS) and stochastic travel and service times. In addition to considering a home healthcare scheduling problem, we introduce an operating room scheduling problem with stochastic durations as a novel application of VRPS. We formulate VRPS with stochastic times as a two-stage stochastic integer programming model that, unlike the deterministic models in the VRPS literature, does not have any big-M constraints. This advantage comes at the cost of a large number of second-stage integer variables. We prove that the integrality constraints on second-stage variables can be relaxed, and therefore, we can apply the L-shaped algorithm and its branch-and-cut implementation to solve the problem. We enhance the model by developing valid inequalities and a lower bounding functional. We analyze the subproblems of the L-shaped algorithm and devise a specialized algorithm for them that is significantly faster than standard linear programming algorithms. Computational results show that the branch-and-cut algorithm optimally solves stochastic home healthcare scheduling instances with 15 patients and 10%–30% of synchronized visits. It also finds solutions with an average optimality gap of 3.57% for instances with 20 patients. Furthermore, the branch-and-cut algorithm optimally solves stochastic operating room scheduling problems with 20 surgeries.

Suggested Citation

  • Hossein Hashemi Doulabi & Gilles Pesant & Louis-Martin Rousseau, 2020. "Vehicle Routing Problems with Synchronized Visits and Stochastic Travel and Service Times: Applications in Healthcare," Transportation Science, INFORMS, vol. 54(4), pages 1053-1072, July.
  • Handle: RePEc:inm:ortrsc:v:54:y:2020:i:4:p:1053-1072
    DOI: 10.1287/trsc.2019.0956
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2019.0956
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2019.0956?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Taş, D. & Gendreau, M. & Dellaert, N. & van Woensel, T. & de Kok, A.G., 2014. "Vehicle routing with soft time windows and stochastic travel times: A column generation and branch-and-price solution approach," European Journal of Operational Research, Elsevier, vol. 236(3), pages 789-799.
    2. Gilbert Laporte & François Louveaux & Hélène Mercure, 1992. "The Vehicle Routing Problem with Stochastic Travel Times," Transportation Science, INFORMS, vol. 26(3), pages 161-170, August.
    3. Qureshi, A.G. & Taniguchi, E. & Yamada, T., 2009. "An exact solution approach for vehicle routing and scheduling problems with soft time windows," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(6), pages 960-977, November.
    4. Michel Gendreau & François Guertin & Jean-Yves Potvin & Éric Taillard, 1999. "Parallel Tabu Search for Real-Time Vehicle Routing and Dispatching," Transportation Science, INFORMS, vol. 33(4), pages 381-390, November.
    5. Edward P. C. Kao, 1978. "A Preference Order Dynamic Program for a Stochastic Traveling Salesman Problem," Operations Research, INFORMS, vol. 26(6), pages 1033-1045, December.
    6. Biao Yuan & Ran Liu & Zhibin Jiang, 2015. "A branch-and-price algorithm for the home health care scheduling and routing problem with stochastic service times and skill requirements," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7450-7464, December.
    7. Yanzhi Li & Andrew Lim & Brian Rodrigues, 2005. "Manpower allocation with time windows and job‐teaming constraints," Naval Research Logistics (NRL), John Wiley & Sons, vol. 52(4), pages 302-311, June.
    8. Li, Xiangyong & Tian, Peng & Leung, Stephen C.H., 2010. "Vehicle routing problems with time windows and stochastic travel and service times: Models and algorithm," International Journal of Production Economics, Elsevier, vol. 125(1), pages 137-145, May.
    9. C Lee & K Lee & S Park, 2012. "Robust vehicle routing problem with deadlines and travel time/demand uncertainty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(9), pages 1294-1306, September.
    10. Errico, F. & Desaulniers, G. & Gendreau, M. & Rei, W. & Rousseau, L.-M., 2016. "A priori optimization with recourse for the vehicle routing problem with hard time windows and stochastic service times," European Journal of Operational Research, Elsevier, vol. 249(1), pages 55-66.
    11. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    12. Barbara De Rosa & Gennaro Improta & Gianpaolo Ghiani & Roberto Musmanno, 2002. "The Arc Routing and Scheduling Problem with Transshipment," Transportation Science, INFORMS, vol. 36(3), pages 301-313, August.
    13. A Lim & B Rodrigues & L Song, 2004. "Manpower allocation with time windows," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1178-1186, November.
    14. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    15. Astrid S. Kenyon & David P. Morton, 2003. "Stochastic Vehicle Routing with Random Travel Times," Transportation Science, INFORMS, vol. 37(1), pages 69-82, February.
    16. Patrick Jaillet & Jin Qi & Melvyn Sim, 2016. "Routing Optimization Under Uncertainty," Operations Research, INFORMS, vol. 64(1), pages 186-200, February.
    17. Éric Taillard & Philippe Badeau & Michel Gendreau & François Guertin & Jean-Yves Potvin, 1997. "A Tabu Search Heuristic for the Vehicle Routing Problem with Soft Time Windows," Transportation Science, INFORMS, vol. 31(2), pages 170-186, May.
    18. Robert L. Carraway & Thomas L. Morin & Herbert Moskowitz, 1989. "Generalized Dynamic Programming for Stochastic Combinatorial Optimization," Operations Research, INFORMS, vol. 37(5), pages 819-829, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soheyl Khalilpourazari & Saman Khalilpourazary & Aybike Özyüksel Çiftçioğlu & Gerhard-Wilhelm Weber, 2021. "Designing energy-efficient high-precision multi-pass turning processes via robust optimization and artificial intelligence," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1621-1647, August.
    2. Maryam Daryalal & Hamed Pouya & Marc Antoine DeSantis, 2023. "Network Migration Problem: A Hybrid Logic-Based Benders Decomposition Approach," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 593-613, May.
    3. Yan Li & Xiao Xu & Fuyu Wang, 2023. "Research on Home Health Care Scheduling Considering Synchronous Access of Caregivers and Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    4. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).
    5. Soheyl Khalilpourazari & Hossein Hashemi Doulabi, 2022. "Designing a hybrid reinforcement learning based algorithm with application in prediction of the COVID-19 pandemic in Quebec," Annals of Operations Research, Springer, vol. 312(2), pages 1261-1305, May.
    6. Li, Yanfeng & Xiang, Ting & Szeto, Wai Yuen, 2021. "Home health care routing and scheduling problem with the consideration of outpatient services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    7. Arden Baxter & Pinar Keskinocak & Mohit Singh, 2022. "Heterogeneous Multi-resource Allocation with Subset Demand Requests," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2389-2399, September.
    8. Bahman Naderi & Vahid Roshanaei & Mehmet A. Begen & Dionne M. Aleman & David R. Urbach, 2021. "Increased Surgical Capacity without Additional Resources: Generalized Operating Room Planning and Scheduling," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2608-2635, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    2. Liu, Bingbing & Guo, Xiaolong & Yu, Yugang & Zhou, Qiang, 2019. "Minimizing the total completion time of an urban delivery problem with uncertain assembly time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 132(C), pages 163-182.
    3. Mojtaba Rajabi-Bahaabadi & Afshin Shariat-Mohaymany & Mohsen Babaei & Daniele Vigo, 2021. "Reliable vehicle routing problem in stochastic networks with correlated travel times," Operational Research, Springer, vol. 21(1), pages 299-330, March.
    4. Yu Zhang & Zhenzhen Zhang & Andrew Lim & Melvyn Sim, 2021. "Robust Data-Driven Vehicle Routing with Time Windows," Operations Research, INFORMS, vol. 69(2), pages 469-485, March.
    5. Mohammed Bazirha & Abdeslam Kadrani & Rachid Benmansour, 2023. "Stochastic home health care routing and scheduling problem with multiple synchronized services," Annals of Operations Research, Springer, vol. 320(2), pages 573-601, January.
    6. Hongtao Lei & Gilbert Laporte & Bo Guo, 2012. "A generalized variable neighborhood search heuristic for the capacitated vehicle routing problem with stochastic service times," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 99-118, April.
    7. Ehmke, Jan Fabian & Campbell, Ann Melissa & Urban, Timothy L., 2015. "Ensuring service levels in routing problems with time windows and stochastic travel times," European Journal of Operational Research, Elsevier, vol. 240(2), pages 539-550.
    8. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    9. Borzou Rostami & Guy Desaulniers & Fausto Errico & Andrea Lodi, 2021. "Branch-Price-and-Cut Algorithms for the Vehicle Routing Problem with Stochastic and Correlated Travel Times," Operations Research, INFORMS, vol. 69(2), pages 436-455, March.
    10. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2018. "The stochastic vehicle routing problem, a literature review, part I: models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 193-221, September.
    11. F. Errico & G. Desaulniers & M. Gendreau & W. Rei & L.-M. Rousseau, 2018. "The vehicle routing problem with hard time windows and stochastic service times," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 223-251, September.
    12. Avraham, Edison & Raviv, Tal, 2020. "The data-driven time-dependent traveling salesperson problem," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 25-40.
    13. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    14. Chen, Lu & Gendreau, Michel & Hà, Minh Hoàng & Langevin, André, 2016. "A robust optimization approach for the road network daily maintenance routing problem with uncertain service time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 85(C), pages 40-51.
    15. Yossiri Adulyasak & Patrick Jaillet, 2016. "Models and Algorithms for Stochastic and Robust Vehicle Routing with Deadlines," Transportation Science, INFORMS, vol. 50(2), pages 608-626, May.
    16. Andrés Gómez & Ricardo Mariño & Raha Akhavan-Tabatabaei & Andrés L. Medaglia & Jorge E. Mendoza, 2016. "On Modeling Stochastic Travel and Service Times in Vehicle Routing," Transportation Science, INFORMS, vol. 50(2), pages 627-641, May.
    17. Jbili, S. & Chelbi, A. & Radhoui, M. & Kessentini, M., 2018. "Integrated strategy of Vehicle Routing and Maintenance," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 202-214.
    18. Biao Yuan & Ran Liu & Zhibin Jiang, 2015. "A branch-and-price algorithm for the home health care scheduling and routing problem with stochastic service times and skill requirements," International Journal of Production Research, Taylor & Francis Journals, vol. 53(24), pages 7450-7464, December.
    19. Guodong Yu & Yu Yang, 2019. "Dynamic routing with real-time traffic information," Operational Research, Springer, vol. 19(4), pages 1033-1058, December.
    20. Pedro Munari & Alfredo Moreno & Jonathan De La Vega & Douglas Alem & Jacek Gondzio & Reinaldo Morabito, 2019. "The Robust Vehicle Routing Problem with Time Windows: Compact Formulation and Branch-Price-and-Cut Method," Transportation Science, INFORMS, vol. 53(4), pages 1043-1066, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:54:y:2020:i:4:p:1053-1072. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.