IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i5p1211-1234.html
   My bibliography  Save this article

Optimization of Battery Charging and Purchasing at Electric Vehicle Battery Swap Stations

Author

Listed:
  • Frank Schneider

    (Supply Chain Management and Management Science, University of Cologne, 50931 Cologne, Germany)

  • Ulrich W. Thonemann

    (Supply Chain Management and Management Science, University of Cologne, 50931 Cologne, Germany)

  • Diego Klabjan

    (Industrial Engineering and Management Science, Northwestern University, Evanston, Illinois 60208)

Abstract

An operator of a network of battery swap stations for electric vehicles must make a long-term investment decision on the number of batteries and charging bays in the system and periodic short-term decisions on when and how many batteries to recharge. Both decisions must be made concurrently, because there exists a trade-off between the long-term investment in batteries and charging bays, and short-term expenses for operating the system. Costs for electric energy as well as demand rates for batteries are stochastic: We consider an infinite time horizon for operation of the system. We derive an optimization problem, which cannot be solved optimally in a reasonable time for real world instances. By optimally solving various small problem instances, we show the mechanics of the model and the influence of its parameters on the optimal cost. We then develop a near-optimal solution heuristic based on Monte Carlo sampling following the ideas of approximate dynamic programming for the infinite horizon dynamic program. We show that operating battery swap stations in a network where lateral transshipments are allowed can substantially decrease expected operating costs.

Suggested Citation

  • Frank Schneider & Ulrich W. Thonemann & Diego Klabjan, 2018. "Optimization of Battery Charging and Purchasing at Electric Vehicle Battery Swap Stations," Transportation Science, INFORMS, vol. 52(5), pages 1211-1234, October.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:5:p:1211-1234
    DOI: 10.1287/trsc.2017.0781
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2017.0781
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2017.0781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Diaz, Angel & Fu, Michael C., 1997. "Models for multi-echelon repairable item inventory systems with limited repair capacity," European Journal of Operational Research, Elsevier, vol. 97(3), pages 480-492, March.
    2. T. W. Archibald & S. A. E. Sassen & L. C. Thomas, 1997. "An Optimal Policy for a Two Depot Inventory Problem with Stock Transfer," Management Science, INFORMS, vol. 43(2), pages 173-183, February.
    3. Craig C. Sherbrooke, 1968. "Metric: A Multi-Echelon Technique for Recoverable Item Control," Operations Research, INFORMS, vol. 16(1), pages 122-141, February.
    4. Tagaras, George, 1999. "Pooling in multi-location periodic inventory distribution systems," Omega, Elsevier, vol. 27(1), pages 39-59, February.
    5. Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2013. "Infrastructure Planning for Electric Vehicles with Battery Swapping," Management Science, INFORMS, vol. 59(7), pages 1557-1575, July.
    6. Huseyin Topaloglu & Sumit Kunnumkal, 2006. "Approximate dynamic programming methods for an inventory allocation problem under uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 53(8), pages 822-841, December.
    7. Minner, Stefan & Silver, Edward A. & Robb, David J., 2003. "An improved heuristic for deciding on emergency transshipments," European Journal of Operational Research, Elsevier, vol. 148(2), pages 384-400, July.
    8. Hau L. Lee, 1987. "A Multi-Echelon Inventory Model for Repairable Items with Emergency Lateral Transshipments," Management Science, INFORMS, vol. 33(10), pages 1302-1316, October.
    9. Paul Glasserman, 1997. "Bounds and Asymptotics for Planning Critical Safety Stocks," Operations Research, INFORMS, vol. 45(2), pages 244-257, April.
    10. Donald Gross & Carl M. Harris, 1971. "On One-For-One-Ordering Inventory Policies with State-Dependent Leadtimes," Operations Research, INFORMS, vol. 19(3), pages 735-760, June.
    11. Jae Ho Kim & Warren B. Powell, 2011. "Optimal Energy Commitments with Storage and Intermittent Supply," Operations Research, INFORMS, vol. 59(6), pages 1347-1360, December.
    12. Stephen C. Graves, 1985. "A Multi-Echelon Inventory Model for a Repairable Item with One-for-One Replenishment," Management Science, INFORMS, vol. 31(10), pages 1247-1256, October.
    13. Buket Avci & Karan Girotra & Serguei Netessine, 2015. "Electric Vehicles with a Battery Switching Station: Adoption and Environmental Impact," Management Science, INFORMS, vol. 61(4), pages 772-794, April.
    14. H. Jönsson & E. A. Silver, 1987. "Analysis of a Two-Echelon Inventory Control System with Complete Redistribution," Management Science, INFORMS, vol. 33(2), pages 215-227, February.
    15. Paul Glasserman & Sridhar Tayur, 1994. "The Stability of a Capacitated, Multi-Echelon Production-Inventory System Under a Base-Stock Policy," Operations Research, INFORMS, vol. 42(5), pages 913-925, October.
    16. Paterson, Colin & Kiesmüller, Gudrun & Teunter, Ruud & Glazebrook, Kevin, 2011. "Inventory models with lateral transshipments: A review," European Journal of Operational Research, Elsevier, vol. 210(2), pages 125-136, April.
    17. Robin O. Roundy & John A. Muckstadt, 2000. "Heuristic Computation of Periodic-Review Base Stock Inventory Policies," Management Science, INFORMS, vol. 46(1), pages 104-109, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xianhao Shen & Yexin Zhang & Decheng Wang, 2022. "Online Charging Strategy for Electric Vehicle Clusters Based on Multi-Agent Reinforcement Learning and Long–Short Memory Networks," Energies, MDPI, vol. 15(13), pages 1-14, June.
    2. Lingshu Zhong & Mingyang Pei, 2020. "Optimal Design for a Shared Swap Charging System Considering the Electric Vehicle Battery Charging Rate," Energies, MDPI, vol. 13(5), pages 1-16, March.
    3. Asadi, Amin & Nurre Pinkley, Sarah, 2021. "A stochastic scheduling, allocation, and inventory replenishment problem for battery swap stations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    4. Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
    5. Zhang, Junxia & Li, Xingmei & Jia, Dongqing & Zhou, Yuexin, 2023. "A Bi-level programming for union battery swapping stations location-routing problem under joint distribution and cost allocation," Energy, Elsevier, vol. 272(C).
    6. Feifeng Zheng & Zhaojie Wang & Ming Liu, 2022. "Overnight charging scheduling of battery electric buses with uncertain charging time," Operational Research, Springer, vol. 22(5), pages 4865-4903, November.
    7. Li, Linman & Li, Yuqing & Liu, Ran & Zhou, Yaoming & Pan, Ershun, 2023. "A Two-stage Stochastic Programming for AGV scheduling with random tasks and battery swapping in automated container terminals," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 174(C).
    8. Huang, Shuai & Fan, Zhi-Ping & Wang, Ningning, 2020. "Green subsidy modes and pricing strategy in a capital-constrained supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    9. Zhan, Weipeng & Wang, Zhenpo & Zhang, Lei & Liu, Peng & Cui, Dingsong & Dorrell, David G., 2022. "A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations," Energy, Elsevier, vol. 258(C).
    10. Guo, Fang & Zhang, Jingjing & Huang, Zhihong & Huang, Weilai, 2022. "Simultaneous charging station location-routing problem for electric vehicles: Effect of nonlinear partial charging and battery degradation," Energy, Elsevier, vol. 250(C).
    11. Yu Feng & Xiaochun Lu, 2021. "Construction Planning and Operation of Battery Swapping Stations for Electric Vehicles: A Literature Review," Energies, MDPI, vol. 14(24), pages 1-19, December.
    12. Kewcharoenwong, Panitan & Li, Qiaofeng & Üster, Halit, 2023. "Lagrangean relaxation algorithms for fixed-charge capacitated relay network design," Omega, Elsevier, vol. 121(C).
    13. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2023. "Optimal pricing strategy for electric vehicle battery swapping: Pay-per-swap or subscription?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 171(C).
    14. Shuna Wang & Zhi-Hua Hu, 2021. "Green Logistics Service Supply Chain Games Considering Risk Preference in Fuzzy Environments," Sustainability, MDPI, vol. 13(14), pages 1-32, July.
    15. Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mandal, Prasenjit, 2021. "Promoting electric vehicle adoption: Who should invest in charging infrastructure?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Kok, Ton & Grob, Christopher & Laumanns, Marco & Minner, Stefan & Rambau, Jörg & Schade, Konrad, 2018. "A typology and literature review on stochastic multi-echelon inventory models," European Journal of Operational Research, Elsevier, vol. 269(3), pages 955-983.
    2. Paterson, Colin & Kiesmüller, Gudrun & Teunter, Ruud & Glazebrook, Kevin, 2011. "Inventory models with lateral transshipments: A review," European Journal of Operational Research, Elsevier, vol. 210(2), pages 125-136, April.
    3. Tiacci, Lorenzo & Saetta, Stefano, 2011. "Reducing the mean supply delay of spare parts using lateral transshipments policies," International Journal of Production Economics, Elsevier, vol. 133(1), pages 182-191, September.
    4. Tiacci, Lorenzo & Saetta, Stefano, 2011. "A heuristic for balancing the inventory level of different locations through lateral shipments," International Journal of Production Economics, Elsevier, vol. 131(1), pages 87-95, May.
    5. T W Archibald, 2007. "Modelling replenishment and transshipment decisions in periodic review multilocation inventory systems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 948-956, July.
    6. Paterson, Colin & Teunter, Ruud & Glazebrook, Kevin, 2012. "Enhanced lateral transshipments in a multi-location inventory system," European Journal of Operational Research, Elsevier, vol. 221(2), pages 317-327.
    7. Fritzsche, R., 2012. "Cost adjustment for single item pooling models using a dynamic failure rate: A calculation for the aircraft industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1065-1079.
    8. García-Benito, Juan Carlos & Martín-Peña, María-Luz, 2021. "A redistribution model with minimum backorders of spare parts: A proposal for the defence sector," European Journal of Operational Research, Elsevier, vol. 291(1), pages 178-193.
    9. Meissner, Joern & Senicheva, Olga V., 2018. "Approximate dynamic programming for lateral transshipment problems in multi-location inventory systems," European Journal of Operational Research, Elsevier, vol. 265(1), pages 49-64.
    10. Özdemir, Deniz & Yücesan, Enver & Herer, Yale T., 2013. "Multi-location transshipment problem with capacitated production," European Journal of Operational Research, Elsevier, vol. 226(3), pages 425-435.
    11. T W Archibald & D P Black & K D Glazebrook, 2010. "The use of simple calibrations of individual locations in making transshipment decisions in a multi-location inventory network," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 294-305, February.
    12. Costantino, Francesco & Di Gravio, Giulio & Patriarca, Riccardo & Petrella, Lea, 2018. "Spare parts management for irregular demand items," Omega, Elsevier, vol. 81(C), pages 57-66.
    13. Hadar Amrani & Eugene Khmelnitsky, 2017. "Optimal division of inventory between depot and bases," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(1), pages 3-18, February.
    14. van Wijk, A.C.C. & Adan, I.J.B.F. & van Houtum, G.J., 2019. "Optimal lateral transshipment policies for a two location inventory problem with multiple demand classes," European Journal of Operational Research, Elsevier, vol. 272(2), pages 481-495.
    15. Xu, Kefeng & Evers, Philip T. & Fu, Michael C., 2003. "Estimating customer service in a two-location continuous review inventory model with emergency transshipments," European Journal of Operational Research, Elsevier, vol. 145(3), pages 569-584, March.
    16. Archibald, T.W. & Black, D. & Glazebrook, K.D., 2009. "An index heuristic for transshipment decisions in multi-location inventory systems based on a pairwise decomposition," European Journal of Operational Research, Elsevier, vol. 192(1), pages 69-78, January.
    17. Patriarca, Riccardo & Costantino, Francesco & Di Gravio, Giulio & Tronci, Massimo, 2016. "Inventory optimization for a customer airline in a Performance Based Contract," Journal of Air Transport Management, Elsevier, vol. 57(C), pages 206-216.
    18. Hu, Jason & Watson, Edward & Schneider, Helmut, 2005. "Approximate solutions for multi-location inventory systems with transshipments," International Journal of Production Economics, Elsevier, vol. 97(1), pages 31-43, July.
    19. Hossein Abouee-Mehrizi & Opher Baron & Oded Berman, 2014. "Exact Analysis of Capacitated Two-Echelon Inventory Systems with Priorities," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 561-577, October.
    20. Satır, Benhür & Savasaneril, Secil & Serin, Yasemin, 2012. "Pooling through lateral transshipments in service parts systems," European Journal of Operational Research, Elsevier, vol. 220(2), pages 370-377.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:5:p:1211-1234. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.