IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v52y2018i2p454-473.html
   My bibliography  Save this article

Time-Dependent Hazardous-Materials Network Design Problem

Author

Listed:
  • Tolou Esfandeh

    (American Airlines, Inc., Fort Worth, Texas 76155)

  • Rajan Batta

    (Department of Industrial and Systems Engineering, University at Buffalo, Buffalo, New York 14260)

  • Changhyun Kwon

    (Department of Industrial and Management Systems Engineering, University of South Florida, Tampa, Florida 33620)

Abstract

We extend the hazardous-materials (hazmat) network design problem to account for the time-dependent road closure as a policy tool to reduce hazmat transport risk by altering carriers’ departure times and route choices. We formulate the time-dependent network design problem using an alternative-based model with each alternative representing a combined path and departure-time choice. We also present an extended model that can not only account for consecutive time-based road closure policies but also allow stopping at the intermediate nodes of the network in the routing/scheduling decisions of the carriers. Heuristic algorithms based on column generation and label setting are presented. To illustrate the advantages that can be gained through the use of our methodology, we present results from numerical experiments based on a transportation network from Buffalo, New York. To investigate the impact of the extensions, we consider three versions of the problem by gradually refining the model. We show that under consideration of extensions, the design policies are more applicable and effective.

Suggested Citation

  • Tolou Esfandeh & Rajan Batta & Changhyun Kwon, 2018. "Time-Dependent Hazardous-Materials Network Design Problem," Transportation Science, INFORMS, vol. 52(2), pages 454-473, March.
  • Handle: RePEc:inm:ortrsc:v:52:y:2018:i:2:p:454-473
    DOI: 10.1287/trsc.2016.0698
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/trsc.2016.0698
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2016.0698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Szeto, W.Y. & Lo, Hong K., 2008. "Time-dependent transport network improvement and tolling strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 376-391, February.
    2. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    3. Patrice Marcotte & Anne Mercier & Gilles Savard & Vedat Verter, 2009. "Toll Policies for Mitigating Hazardous Materials Transport Risk," Transportation Science, INFORMS, vol. 43(2), pages 228-243, May.
    4. Marco E. Lübbecke & Jacques Desrosiers, 2005. "Selected Topics in Column Generation," Operations Research, INFORMS, vol. 53(6), pages 1007-1023, December.
    5. Ashish K. Nemani & Suat Bog & Ravindra K. Ahuja, 2010. "Solving the Curfew Planning Problem," Transportation Science, INFORMS, vol. 44(4), pages 506-523, November.
    6. Hosseininasab, Seyyed-Mohammadreza & Shetab-Boushehri, Seyyed-Nader, 2015. "Integration of selecting and scheduling urban road construction projects as a time-dependent discrete network design problem," European Journal of Operational Research, Elsevier, vol. 246(3), pages 762-771.
    7. George B. Dantzig & Philip Wolfe, 1960. "Decomposition Principle for Linear Programs," Operations Research, INFORMS, vol. 8(1), pages 101-111, February.
    8. Vedat Verter & Bahar Y. Kara, 2008. "A Path-Based Approach for Hazmat Transport Network Design," Management Science, INFORMS, vol. 54(1), pages 29-40, January.
    9. Longsheng Sun & Mark H. Karwan & Changhyun Kwon, 2016. "Robust Hazmat Network Design Problems Considering Risk Uncertainty," Transportation Science, INFORMS, vol. 50(4), pages 1188-1203, November.
    10. Lucio Bianco & Massimiliano Caramia & Stefano Giordani & Veronica Piccialli, 2013. "Operations Research Models for Global Route Planning in Hazardous Material Transportation," International Series in Operations Research & Management Science, in: Rajan Batta & Changhyun Kwon (ed.), Handbook of OR/MS Models in Hazardous Materials Transportation, edition 127, pages 49-101, Springer.
    11. Esfandeh, Tolou & Kwon, Changhyun & Batta, Rajan, 2016. "Regulating hazardous materials transportation by dual toll pricing," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 20-35.
    12. Lucio Bianco & Massimiliano Caramia & Stefano Giordani & Veronica Piccialli, 2016. "A Game-Theoretic Approach for Regulating Hazmat Transportation," Transportation Science, INFORMS, vol. 50(2), pages 424-438, May.
    13. Jiashan Wang & Yingying Kang & Changhyun Kwon & Rajan Batta, 2012. "Dual Toll Pricing for Hazardous Materials Transport with Linear Delay," Networks and Spatial Economics, Springer, vol. 12(1), pages 147-165, March.
    14. Lo, Hong K. & Szeto, W.Y., 2009. "Time-dependent transport network design under cost-recovery," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 142-158, January.
    15. Chung, Byung Do & Yao, Tao & Friesz, Terry L. & Liu, Hongcheng, 2012. "Dynamic congestion pricing with demand uncertainty: A robust optimization approach," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1504-1518.
    16. Iakovos Toumazis & Changhyun Kwon, 2016. "Worst-Case Conditional Value-at-Risk Minimization for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 50(4), pages 1174-1187, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan Sun & Xinya Li & Xia Liang & Cevin Zhang, 2019. "A Bi-Objective Fuzzy Credibilistic Chance-Constrained Programming Approach for the Hazardous Materials Road-Rail Multimodal Routing Problem under Uncertainty and Sustainability," Sustainability, MDPI, vol. 11(9), pages 1-27, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hosseini, S. Davod & Verma, Manish, 2018. "Conditional value-at-risk (CVaR) methodology to optimal train configuration and routing of rail hazmat shipments," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 79-103.
    2. Fontaine, Pirmin & Minner, Stefan, 2018. "Benders decomposition for the Hazmat Transport Network Design Problem," European Journal of Operational Research, Elsevier, vol. 267(3), pages 996-1002.
    3. Ke, Ginger Y. & Zhang, Huiwen & Bookbinder, James H., 2020. "A dual toll policy for maintaining risk equity in hazardous materials transportation with fuzzy incident rate," International Journal of Production Economics, Elsevier, vol. 227(C).
    4. Liu Su & Changhyun Kwon, 2020. "Risk-Averse Network Design with Behavioral Conditional Value-at-Risk for Hazardous Materials Transportation," Transportation Science, INFORMS, vol. 54(1), pages 184-203, January.
    5. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    6. Fontaine, Pirmin & Crainic, Teodor Gabriel & Gendreau, Michel & Minner, Stefan, 2020. "Population-based risk equilibration for the multimode hazmat transport network design problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 188-200.
    7. Ditta, A. & Figueroa, O. & Galindo, G. & Yie-Pinedo, R., 2019. "A review on research in transportation of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
    8. Bhavsar, Nishit & Verma, Manish, 2022. "A subsidy policy to managing hazmat risk in railroad transportation network," European Journal of Operational Research, Elsevier, vol. 300(2), pages 633-646.
    9. Francisco López-Ramos & Stefano Nasini & Armando Guarnaschelli, 2019. "Road network pricing and design for ordinary and hazmat vehicles: Integrated model and specialized local search," Post-Print hal-02510066, HAL.
    10. François Clautiaux & Cláudio Alves & José Valério de Carvalho & Jürgen Rietz, 2011. "New Stabilization Procedures for the Cutting Stock Problem," INFORMS Journal on Computing, INFORMS, vol. 23(4), pages 530-545, November.
    11. Omid Shahvari & Rasaratnam Logendran & Madjid Tavana, 2022. "An efficient model-based branch-and-price algorithm for unrelated-parallel machine batching and scheduling problems," Journal of Scheduling, Springer, vol. 25(5), pages 589-621, October.
    12. Ibrahim Muter & Tevfik Aytekin, 2017. "Incorporating Aggregate Diversity in Recommender Systems Using Scalable Optimization Approaches," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 405-421, August.
    13. Ambros Gleixner & Stephen J. Maher & Benjamin Müller & João Pedro Pedroso, 2020. "Price-and-verify: a new algorithm for recursive circle packing using Dantzig–Wolfe decomposition," Annals of Operations Research, Springer, vol. 284(2), pages 527-555, January.
    14. Paul Berglund & Changhyun Kwon, 2014. "Robust Facility Location Problem for Hazardous Waste Transportation," Networks and Spatial Economics, Springer, vol. 14(1), pages 91-116, March.
    15. Ibrahim Muter & Jean-François Cordeau & Gilbert Laporte, 2014. "A Branch-and-Price Algorithm for the Multidepot Vehicle Routing Problem with Interdepot Routes," Transportation Science, INFORMS, vol. 48(3), pages 425-441, August.
    16. Gondzio, Jacek & González-Brevis, Pablo & Munari, Pedro, 2013. "New developments in the primal–dual column generation technique," European Journal of Operational Research, Elsevier, vol. 224(1), pages 41-51.
    17. Timo Gschwind & Stefan Irnich, 2014. "Dual Inequalities for Stabilized Column Generation Revisited," Working Papers 1407, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 23 Jul 2014.
    18. Víctor M. Albornoz & Gabriel E. Zamora, 2021. "Decomposition-based heuristic for the zoning and crop planning problem with adjacency constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 248-265, April.
    19. Sebastian Kraul & Markus Seizinger & Jens O. Brunner, 2023. "Machine Learning–Supported Prediction of Dual Variables for the Cutting Stock Problem with an Application in Stabilized Column Generation," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 692-709, May.
    20. Delorme, Maxence & Iori, Manuel & Martello, Silvano, 2016. "Bin packing and cutting stock problems: Mathematical models and exact algorithms," European Journal of Operational Research, Elsevier, vol. 255(1), pages 1-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:52:y:2018:i:2:p:454-473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.