IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v36y2002i3p337-348.html
   My bibliography  Save this article

Airline Crew Scheduling with Time Windows and Plane-Count Constraints

Author

Listed:
  • Diego Klabjan

    (Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801)

  • Ellis L. Johnson

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205)

  • George L. Nemhauser

    (School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0205)

  • Eric Gelman

    (Information Technology Services, American Airlines, Dallas-Ft. Worth Airport, Texas 75261-8616)

  • Srini Ramaswamy

    (Research and Development, Information Services Division, United Airlines)

Abstract

Airline planning consists of several problems that are currently solved separately. We address a partial integration of schedule planning, aircraft routing, and crew scheduling. In particular, we provide more flexibility for crew scheduling while maintaining the feasibility of aircraft routing by adding plane-count constraints to the crew-scheduling problem. In addition, we assume that the departure times of flights have not yet been fixed and we are allowed to move the departure time of a flight as long as it is within a given time window. We demonstrate that such a model yields solutions to the crew-scheduling problem with significantly lower costs than those obtained from the traditional model.

Suggested Citation

  • Diego Klabjan & Ellis L. Johnson & George L. Nemhauser & Eric Gelman & Srini Ramaswamy, 2002. "Airline Crew Scheduling with Time Windows and Plane-Count Constraints," Transportation Science, INFORMS, vol. 36(3), pages 337-348, August.
  • Handle: RePEc:inm:ortrsc:v:36:y:2002:i:3:p:337-348
    DOI: 10.1287/trsc.36.3.337.7831
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.36.3.337.7831
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.36.3.337.7831?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cynthia Barnhart & Natashia L. Boland & Lloyd W. Clarke & Ellis L. Johnson & George L. Nemhauser & Rajesh G. Shenoi, 1998. "Flight String Models for Aircraft Fleeting and Routing," Transportation Science, INFORMS, vol. 32(3), pages 208-220, August.
    2. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    3. Guy Desaulniers & Jacques Desrosiers & Yvan Dumas & Marius M. Solomon & François Soumis, 1997. "Daily Aircraft Routing and Scheduling," Management Science, INFORMS, vol. 43(6), pages 841-855, June.
    4. Lloyd Clarke & Ellis Johnson & George Nemhauser & Zhongxi Zhu, 1997. "The aircraft rotation problem," Annals of Operations Research, Springer, vol. 69(0), pages 33-46, January.
    5. Freling, R. & Huisman, D. & Wagelmans, A.P.M., 2000. "Models and algorithms for Integration of Vehicle and Crew Scheduling," ERIM Report Series Research in Management ERS-2000-14-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hanif D. Sherali & Ki-Hwan Bae & Mohamed Haouari, 2013. "An Integrated Approach for Airline Flight Selection and Timing, Fleet Assignment, and Aircraft Routing," Transportation Science, INFORMS, vol. 47(4), pages 455-476, November.
    2. Liang, Zhe & Feng, Yuan & Zhang, Xiaoning & Wu, Tao & Chaovalitwongse, Wanpracha Art, 2015. "Robust weekly aircraft maintenance routing problem and the extension to the tail assignment problem," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 238-259.
    3. Zhe Liang & Wanpracha Art Chaovalitwongse, 2013. "A Network-Based Model for the Integrated Weekly Aircraft Maintenance Routing and Fleet Assignment Problem," Transportation Science, INFORMS, vol. 47(4), pages 493-507, November.
    4. Sarac, Abdulkadir & Batta, Rajan & Rump, Christopher M., 2006. "A branch-and-price approach for operational aircraft maintenance routing," European Journal of Operational Research, Elsevier, vol. 175(3), pages 1850-1869, December.
    5. Gopalan, Ram, 2014. "The Aircraft Maintenance Base Location Problem," European Journal of Operational Research, Elsevier, vol. 236(2), pages 634-642.
    6. Sanchez, David Torres & Boyacı, Burak & Zografos, Konstantinos G., 2020. "An optimisation framework for airline fleet maintenance scheduling with tail assignment considerations," Transportation Research Part B: Methodological, Elsevier, vol. 133(C), pages 142-164.
    7. Parmentier, Axel & Meunier, Frédéric, 2020. "Aircraft routing and crew pairing: Updated algorithms at Air France," Omega, Elsevier, vol. 93(C).
    8. F M Zeghal & M Haouari & H D Sherali & N Aissaoui, 2011. "Flexible aircraft fleeting and routing at TunisAir," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(2), pages 368-380, February.
    9. Rivi Sandhu & Diego Klabjan, 2007. "Integrated Airline Fleeting and Crew-Pairing Decisions," Operations Research, INFORMS, vol. 55(3), pages 439-456, June.
    10. Haouari, Mohamed & Aissaoui, Najla & Mansour, Farah Zeghal, 2009. "Network flow-based approaches for integrated aircraft fleeting and routing," European Journal of Operational Research, Elsevier, vol. 193(2), pages 591-599, March.
    11. Jamili, Amin, 2017. "A robust mathematical model and heuristic algorithms for integrated aircraft routing and scheduling, with consideration of fleet assignment problem," Journal of Air Transport Management, Elsevier, vol. 58(C), pages 21-30.
    12. Khaled, Oumaima & Minoux, Michel & Mousseau, Vincent & Michel, Stéphane & Ceugniet, Xavier, 2018. "A compact optimization model for the tail assignment problem," European Journal of Operational Research, Elsevier, vol. 264(2), pages 548-557.
    13. Başdere, Mehmet & Bilge, Ümit, 2014. "Operational aircraft maintenance routing problem with remaining time consideration," European Journal of Operational Research, Elsevier, vol. 235(1), pages 315-328.
    14. Stern, Helman I. & Gertsbakh, Ilya B., 2019. "Using deficit functions for aircraft fleet routing," Operations Research Perspectives, Elsevier, vol. 6(C).
    15. Glomb, Lukas & Liers, Frauke & Rösel, Florian, 2023. "Optimizing integrated aircraft assignment and turnaround handling," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1051-1071.
    16. Sriram, Chellappan & Haghani, Ali, 2003. "An optimization model for aircraft maintenance scheduling and re-assignment," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(1), pages 29-48, January.
    17. Mohamed Haouari & Shengzhi Shao & Hanif D. Sherali, 2013. "A Lifted Compact Formulation for the Daily Aircraft Maintenance Routing Problem," Transportation Science, INFORMS, vol. 47(4), pages 508-525, November.
    18. Okan Örsan Özener & Melda Örmeci Matoğlu & Güneş Erdoğan & Mohamed Haouari & Hasan Sözer, 2017. "Solving a large-scale integrated fleet assignment and crew pairing problem," Annals of Operations Research, Springer, vol. 253(1), pages 477-500, June.
    19. Jean-François Cordeau & Goran Stojković & François Soumis & Jacques Desrosiers, 2001. "Benders Decomposition for Simultaneous Aircraft Routing and Crew Scheduling," Transportation Science, INFORMS, vol. 35(4), pages 375-388, November.
    20. Michelle Dunbar & Gary Froyland & Cheng-Lung Wu, 2012. "Robust Airline Schedule Planning: Minimizing Propagated Delay in an Integrated Routing and Crewing Framework," Transportation Science, INFORMS, vol. 46(2), pages 204-216, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:36:y:2002:i:3:p:337-348. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.