IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v64y2016i6p1177-1196.html
   My bibliography  Save this article

Strong SOCP Relaxations for the Optimal Power Flow Problem

Author

Listed:
  • Burak Kocuk

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Santanu S. Dey

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

  • X. Andy Sun

    (H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332)

Abstract

This paper proposes three strong second order cone programming (SOCP) relaxations for the AC optimal power flow (OPF) problem. These three relaxations are incomparable to each other and two of them are incomparable to the standard SDP relaxation of OPF. Extensive computational experiments show that these relaxations have numerous advantages over existing convex relaxations in the literature: (i) their solution quality is extremely close to that of the standard SDP relaxation (the best one is within 99.96% of the SDP relaxation on average for all the IEEE test cases) and consistently outperforms previously proposed convex quadratic relaxations of the OPF problem, (ii) the solutions from the strong SOCP relaxations can be directly used as a warm start in a local solver such as IPOPT to obtain a high quality feasible OPF solution, and (iii) in terms of computation times, the strong SOCP relaxations can be solved an order of magnitude faster than the standard SDP relaxation. For example, one of the proposed SOCP relaxations together with IPOPT produces a feasible solution for the largest instance in the IEEE test cases (the 3375-bus system) and also certifies that this solution is within 0.13% of global optimality, all this computed within 157.20 seconds on a modest personal computer. Overall, the proposed strong SOCP relaxations provide a practical approach to obtain feasible OPF solutions with extremely good quality within a time framework that is compatible with the real-time operation in the current industry practice.

Suggested Citation

  • Burak Kocuk & Santanu S. Dey & X. Andy Sun, 2016. "Strong SOCP Relaxations for the Optimal Power Flow Problem," Operations Research, INFORMS, vol. 64(6), pages 1177-1196, December.
  • Handle: RePEc:inm:oropre:v:64:y:2016:i:6:p:1177-1196
    DOI: 10.1287/opre.2016.1489
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2016.1489
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2016.1489?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carleton Coffrin & Pascal Van Hentenryck, 2014. "A Linear-Programming Approximation of AC Power Flows," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 718-734, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jia & Zeng, Peter Pingliang & Xing, Hao & Li, Yalou & Wu, Qiuwei, 2020. "Hierarchical duality-based planning of transmission networks coordinating active distribution network operation," Energy, Elsevier, vol. 213(C).
    2. Le Cadre, Hélène & Mezghani, Ilyès & Papavasiliou, Anthony, 2019. "A game-theoretic analysis of transmission-distribution system operator coordination," European Journal of Operational Research, Elsevier, vol. 274(1), pages 317-339.
    3. Senpeng Gao & Xiaoqing Bai & Qinghua Shang & Zonglong Weng & Yinghe Wu, 2024. "A Joint Electricity Market-Clearing Mechanism for Flexible Ramping Products with a Convex Spot Market Model," Sustainability, MDPI, vol. 16(6), pages 1-25, March.
    4. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    5. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    6. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    7. Ratha, Anubhav & Pinson, Pierre & Le Cadre, Hélène & Virag, Ana & Kazempour, Jalal, 2023. "Moving from linear to conic markets for electricity," European Journal of Operational Research, Elsevier, vol. 309(2), pages 762-783.
    8. Reza Sabzehgar & Diba Zia Amirhosseini & Saeed D. Manshadi & Poria Fajri, 2021. "Stochastic Expansion Planning of Various Energy Storage Technologies in Active Power Distribution Networks," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
    9. Haoxiang Yang & David P. Morton & Chaithanya Bandi & Krishnamurthy Dvijotham, 2021. "Robust Optimization for Electricity Generation," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 336-351, January.
    10. Zohrizadeh, Fariba & Josz, Cedric & Jin, Ming & Madani, Ramtin & Lavaei, Javad & Sojoudi, Somayeh, 2020. "A survey on conic relaxations of optimal power flow problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 391-409.
    11. Jay, Devika & Swarup, K.S., 2021. "A comprehensive survey on reactive power ancillary service markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    12. Chen, J.J. & Wu, Q.H. & Zhang, L.L. & Wu, P.Z., 2017. "Multi-objective mean–variance–skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties," European Journal of Operational Research, Elsevier, vol. 263(2), pages 719-732.
    13. Kaizhao Sun & X. Andy Sun, 2023. "A two-level distributed algorithm for nonconvex constrained optimization," Computational Optimization and Applications, Springer, vol. 84(2), pages 609-649, March.
    14. Harsha Nagarajan & Mowen Lu & Site Wang & Russell Bent & Kaarthik Sundar, 2019. "An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs," Journal of Global Optimization, Springer, vol. 74(4), pages 639-675, August.
    15. Iacopo Savelli & Thomas Morstyn, 2020. "Electricity prices and tariffs to keep everyone happy: a framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Papers 2001.04283, arXiv.org, revised Jun 2021.
    16. Daniel Bienstock & Mauro Escobar & Claudio Gentile & Leo Liberti, 2022. "Mathematical programming formulations for the alternating current optimal power flow problem," Annals of Operations Research, Springer, vol. 314(1), pages 277-315, July.
    17. Puming Wang & Liqin Zheng & Tianyi Diao & Shengquan Huang & Xiaoqing Bai, 2023. "Robust Bilevel Optimal Dispatch of Park Integrated Energy System Considering Renewable Energy Uncertainty," Energies, MDPI, vol. 16(21), pages 1-23, October.
    18. Dan Bienstock & Mauro Escobar & Claudio Gentile & Leo Liberti, 2020. "Mathematical programming formulations for the alternating current optimal power flow problem," 4OR, Springer, vol. 18(3), pages 249-292, September.
    19. Subramanian, Vignesh & Feijoo, Felipe & Sankaranarayanan, Sriram & Melendez, Kevin & Das, Tapas K., 2022. "A bilevel conic optimization model for routing and charging of EV fleets serving long distance delivery networks," Energy, Elsevier, vol. 251(C).
    20. Kevin-Martin Aigner & Robert Burlacu & Frauke Liers & Alexander Martin, 2023. "Solving AC Optimal Power Flow with Discrete Decisions to Global Optimality," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 458-474, March.
    21. Wogrin, S. & Tejada-Arango, D. & Delikaraoglou, S. & Botterud, A., 2020. "Assessing the impact of inertia and reactive power constraints in generation expansion planning," Applied Energy, Elsevier, vol. 280(C).
    22. Amir Ahmadi-Javid & Pooya Hoseinpour, 2022. "Convexification of Queueing Formulas by Mixed-Integer Second-Order Cone Programming: An Application to a Discrete Location Problem with Congestion," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2621-2633, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    2. Neumann, Fabian & Hagenmeyer, Veit & Brown, Tom, 2022. "Assessments of linear power flow and transmission loss approximations in coordinated capacity expansion problems," Applied Energy, Elsevier, vol. 314(C).
    3. Sarid, A. & Tzur, M., 2018. "The multi-scale generation and transmission expansion model," Energy, Elsevier, vol. 148(C), pages 977-991.
    4. Saber, Hossein & Mazaheri, Hesam & Ranjbar, Hossein & Moeini-Aghtaie, Moein & Lehtonen, Matti, 2021. "Utilization of in-pipe hydropower renewable energy technology and energy storage systems in mountainous distribution networks," Renewable Energy, Elsevier, vol. 172(C), pages 789-801.
    5. Karimi, Ali & Aminifar, Farrokh & Fereidunian, Alireza & Lesani, Hamid, 2019. "Energy storage allocation in wind integrated distribution networks: An MILP-Based approach," Renewable Energy, Elsevier, vol. 134(C), pages 1042-1055.
    6. Xingpeng Li, 2020. "Fast Heuristic AC Power Flow Analysis with Data-Driven Enhanced Linearized Model," Energies, MDPI, vol. 13(13), pages 1-17, June.
    7. Tómasson, Egill & Söder, Lennart, 2020. "Coordinated optimal strategic demand reserve procurement in multi-area power systems," Applied Energy, Elsevier, vol. 270(C).
    8. Subramanian, Vignesh & Feijoo, Felipe & Sankaranarayanan, Sriram & Melendez, Kevin & Das, Tapas K., 2022. "A bilevel conic optimization model for routing and charging of EV fleets serving long distance delivery networks," Energy, Elsevier, vol. 251(C).
    9. Sunil Chopra & Feng Qiu & Sangho Shim, 2023. "Parallel Power System Restoration," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 233-247, January.
    10. Nikoobakht, Ahmad & Aghaei, Jamshid & Khatami, Roohallah & Mahboubi-Moghaddam, Esmaeel & Parvania, Masood, 2019. "Stochastic flexible transmission operation for coordinated integration of plug-in electric vehicles and renewable energy sources," Applied Energy, Elsevier, vol. 238(C), pages 225-238.
    11. Grimm, Veronika & Grübel, Julia & Rückel, Bastian & Sölch, Christian & Zöttl, Gregor, 2020. "Storage investment and network expansion in distribution networks: The impact of regulatory frameworks," Applied Energy, Elsevier, vol. 262(C).
    12. Gideon Ude Nnachi & Yskandar Hamam & Coneth Graham Richards, 2022. "Appraising the Optimal Power Flow and Generation Capacity in Existing Power Grid Topology with Increase in Energy Demand," Energies, MDPI, vol. 15(7), pages 1-23, March.
    13. Zhang, Tao & Mu, Yunfei & Dong, Lei & Jia, Hongjie & Pu, Tianjiao & Wang, Xinying, 2023. "Fully parallel decentralized load restoration in coupled transmission and distribution system with soft open points," Applied Energy, Elsevier, vol. 349(C).
    14. Zohrizadeh, Fariba & Josz, Cedric & Jin, Ming & Madani, Ramtin & Lavaei, Javad & Sojoudi, Somayeh, 2020. "A survey on conic relaxations of optimal power flow problem," European Journal of Operational Research, Elsevier, vol. 287(2), pages 391-409.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:64:y:2016:i:6:p:1177-1196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.