IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v62y2014i3p696-711.html
   My bibliography  Save this article

Generalized Restless Bandits and the Knapsack Problem for Perishable Inventories

Author

Listed:
  • Darina Graczová

    (Department of Applied Mathematics and Statistics, Comenius University, 842 48 Bratislava, Slovakia)

  • Peter Jacko

    (Department of Management Science, Lancaster University Management School, Lancaster, LA1 4YX, United Kingdom; and BCAM Basque Center for Applied Mathematics, 48009 Bilbao, Spain)

Abstract

In this paper we introduce the knapsack problem for perishable inventories concerning the optimal dynamic allocation of a collection of products to a limited knapsack. The motivation for designing such a problem comes from retail revenue management, where different products often have an associated lifetime during which they can only be sold, and the managers can regularly select some products to be allocated to a limited promotion space that is expected to attract more customers than the standard shelves. Another motivation comes from scheduling of requests in modern multiserver data centers so that quality-of-service requirements given by completion deadlines are satisfied. Using the Lagrangian approach we derive an optimal index policy for the Whittle relaxation of the problem in which the knapsack capacity is used only on average. Assuming a certain structure of the optimal policy for the single-inventory control, we prove indexability and derive an efficient, linear-time algorithm for computing the index values. To the best of our knowledge, our paper is the first to provide indexability analysis of a restless bandit with bi-dimensional state (lifetime and inventory level). We illustrate that these index values are numerically close to the true index values when such a structure is not present. We test two index-based heuristics for the original, nonrelaxed problem: (1) a conventional index rule , which prescribes to order the products according to their current index values and promotes as many products as fit in the knapsack, and (2) a recently proposed index-knapsack heuristic , which employs the index values as a proxy for the price of promotion and proposes to solve a deterministic knapsack problem to select the products. By a systematic computational study we show that the performance of both heuristics is nearly optimal, and that the index-knapsack heuristic outperforms the conventional index rule.

Suggested Citation

  • Darina Graczová & Peter Jacko, 2014. "Generalized Restless Bandits and the Knapsack Problem for Perishable Inventories," Operations Research, INFORMS, vol. 62(3), pages 696-711, June.
  • Handle: RePEc:inm:oropre:v:62:y:2014:i:3:p:696-711
    DOI: 10.1287/opre.2014.1272
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.2014.1272
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.2014.1272?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. R Bai & E K Burke & G Kendall, 2008. "Heuristic, meta-heuristic and hyper-heuristic approaches for fresh produce inventory control and shelf space allocation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(10), pages 1387-1397, October.
    2. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    3. George B. Dantzig, 1957. "Discrete-Variable Extremum Problems," Operations Research, INFORMS, vol. 5(2), pages 266-288, April.
    4. Retsef Levi & Cong Shi, 2013. "Approximation Algorithms for the Stochastic Lot-Sizing Problem with Order Lead Times," Operations Research, INFORMS, vol. 61(3), pages 593-602, June.
    5. Ruibin Bai & Graham Kendall, 2008. "A Model for Fresh Produce Shelf-Space Allocation and Inventory Management with Freshness-Condition-Dependent Demand," INFORMS Journal on Computing, INFORMS, vol. 20(1), pages 78-85, February.
    6. K. D. Glazebrook & R. Minty, 2009. "A Generalized Gittins Index for a Class of Multiarmed Bandits with General Resource Requirements," Mathematics of Operations Research, INFORMS, vol. 34(1), pages 26-44, February.
    7. Siddharth Mahajan & Garrett van Ryzin, 2001. "Stocking Retail Assortments Under Dynamic Consumer Substitution," Operations Research, INFORMS, vol. 49(3), pages 334-351, June.
    8. Goyal, S. K. & Giri, B. C., 2001. "Recent trends in modeling of deteriorating inventory," European Journal of Operational Research, Elsevier, vol. 134(1), pages 1-16, October.
    9. Christopher Dance & Alexei Gaivoronski, 2012. "Stochastic optimization for real time service capacity allocation under random service demand," Annals of Operations Research, Springer, vol. 193(1), pages 221-253, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    2. Urtzi Ayesta & Manu K. Gupta & Ina Maria Verloop, 2021. "On the computation of Whittle’s index for Markovian restless bandits," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 93(1), pages 179-208, February.
    3. Dong Li & Li Ding & Stephen Connor, 2020. "When to Switch? Index Policies for Resource Scheduling in Emergency Response," Production and Operations Management, Production and Operations Management Society, vol. 29(2), pages 241-262, February.
    4. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    5. Abderrahmane Abbou & Viliam Makis, 2019. "Group Maintenance: A Restless Bandits Approach," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 719-731, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dobson, Gregory & Pinker, Edieal J. & Yildiz, Ozlem, 2017. "An EOQ model for perishable goods with age-dependent demand rate," European Journal of Operational Research, Elsevier, vol. 257(1), pages 84-88.
    2. Peter Jacko, 2016. "Resource capacity allocation to stochastic dynamic competitors: knapsack problem for perishable items and index-knapsack heuristic," Annals of Operations Research, Springer, vol. 241(1), pages 83-107, June.
    3. Markus Ettl & Pavithra Harsha & Anna Papush & Georgia Perakis, 2020. "A Data-Driven Approach to Personalized Bundle Pricing and Recommendation," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 461-480, May.
    4. Feng, Lin & Wang, Wan-Chih & Teng, Jinn-Tsair & Cárdenas-Barrón, Leopoldo Eduardo, 2022. "Pricing and lot-sizing decision for fresh goods when demand depends on unit price, displaying stocks and product age under generalized payments," European Journal of Operational Research, Elsevier, vol. 296(3), pages 940-952.
    5. Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "Dynamic Assortment Optimization for Reusable Products with Random Usage Durations," Management Science, INFORMS, vol. 66(7), pages 2820-2844, July.
    6. Fernando Bernstein & A. Gürhan Kök & Lei Xie, 2015. "Dynamic Assortment Customization with Limited Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 538-553, October.
    7. Mallol-Poyato, R. & Salcedo-Sanz, S. & Jiménez-Fernández, S. & Díaz-Villar, P., 2015. "Optimal discharge scheduling of energy storage systems in MicroGrids based on hyper-heuristics," Renewable Energy, Elsevier, vol. 83(C), pages 13-24.
    8. Ali Aouad & Jacob Feldman & Danny Segev, 2023. "The Exponomial Choice Model for Assortment Optimization: An Alternative to the MNL Model?," Management Science, INFORMS, vol. 69(5), pages 2814-2832, May.
    9. Mehmet Fadılog̃lu & Oya Karaşan & Mustafa Pınar, 2010. "A model and case study for efficient shelf usage and assortment analysis," Annals of Operations Research, Springer, vol. 180(1), pages 105-124, November.
    10. van Donselaar, K. & van Woensel, T. & Broekmeulen, R. & Fransoo, J., 2006. "Inventory control of perishables in supermarkets," International Journal of Production Economics, Elsevier, vol. 104(2), pages 462-472, December.
    11. Wenjia Ba & Haim Mendelson & Mingxi Zhu, 2020. "Sales Policies for a Virtual Assistant," Papers 2009.03719, arXiv.org.
    12. Ioannis Mallidis & Dimitrios Vlachos & Volha Yakavenka & Zafeiriou Eleni, 2020. "Development of a single period inventory planning model for perishable product redistribution," Annals of Operations Research, Springer, vol. 294(1), pages 697-713, November.
    13. Qin, Yiyan & Wang, Jianjun & Wei, Caimin, 2014. "Joint pricing and inventory control for fresh produce and foods with quality and physical quantity deteriorating simultaneously," International Journal of Production Economics, Elsevier, vol. 152(C), pages 42-48.
    14. Chen, Jing & Dong, Ming & Rong, Ying & Yang, Liang, 2018. "Dynamic pricing for deteriorating products with menu cost," Omega, Elsevier, vol. 75(C), pages 13-26.
    15. Çömez-Dolgan, Nagihan & Fescioglu-Unver, Nilgun & Cephe, Ecem & Şen, Alper, 2021. "Capacitated strategic assortment planning under explicit demand substitution," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1120-1138.
    16. Feng, Lin & Chan, Ya-Lan & Cárdenas-Barrón, Leopoldo Eduardo, 2017. "Pricing and lot-sizing polices for perishable goods when the demand depends on selling price, displayed stocks, and expiration date," International Journal of Production Economics, Elsevier, vol. 185(C), pages 11-20.
    17. Muriana, Cinzia, 2016. "An EOQ model for perishable products with fixed shelf life under stochastic demand conditions," European Journal of Operational Research, Elsevier, vol. 255(2), pages 388-396.
    18. Xiuli Chao & Xiting Gong & Cong Shi & Huanan Zhang, 2015. "Approximation Algorithms for Perishable Inventory Systems," Operations Research, INFORMS, vol. 63(3), pages 585-601, June.
    19. Masoumi, Amir H. & Yu, Min & Nagurney, Anna, 2012. "A supply chain generalized network oligopoly model for pharmaceuticals under brand differentiation and perishability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(4), pages 762-780.
    20. Xi Chen & Chao Shi & Yining Wang & Yuan Zhou, 2021. "Dynamic Assortment Planning Under Nested Logit Models," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 85-102, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:62:y:2014:i:3:p:696-711. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.