IDEAS home Printed from https://ideas.repec.org/a/inm/ormsom/v22y2020i3p461-480.html
   My bibliography  Save this article

A Data-Driven Approach to Personalized Bundle Pricing and Recommendation

Author

Listed:
  • Markus Ettl

    (TJ Watson Research Center, Yorktown Heights, New York 10598)

  • Pavithra Harsha

    (TJ Watson Research Center, Yorktown Heights, New York 10598)

  • Anna Papush

    (Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Georgia Perakis

    (Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

Problem definition : The growing trend in online shopping has sparked the development of increasingly more sophisticated product recommendation systems. We construct a model that recommends a personalized discounted product bundle to an online shopper that considers the trade-off between profit maximization and inventory management, while selecting products that are relevant to the consumer’s preferences. Academic/practical relevance : We provide analytical performance guarantees that illustrate the complexity of the underlying problem, which combines assortment optimization with pricing. We implement our algorithms in two separate case studies on actual data from a large U.S. e-tailer and a premier global airline. Methodology : We focus on simultaneously balancing personalization through individualized functions of consumer propensity-to-buy, inventory management for long-run profitability, and tractability for practical business implementation. We develop two classes of approximation algorithms, multiplicative and additive, to produce a real-time output for use in an online setting. Results : Our computational results demonstrate significant lifts in expected revenues over current industry pricing strategies on the order of 2%–7% depending on the setting. We find that on average our best algorithm obtains 92% of the expected revenue of a full-knowledge clairvoyant strategy across all inventory settings, and in the best cases this improves to 98%. Managerial implications : We compare the algorithms and find that the multiplicative approach is relatively easier to implement and on average empirically obtains expected revenues within 1%–6% of the additive methods when both are compared with a full-knowledge strategy. Furthermore, we find that the greatest expected gains in revenue come from high-end consumers with lower price sensitivities, and that predicted improvements in sales volume depend on product category and are a result of providing relevant recommendations.

Suggested Citation

  • Markus Ettl & Pavithra Harsha & Anna Papush & Georgia Perakis, 2020. "A Data-Driven Approach to Personalized Bundle Pricing and Recommendation," Manufacturing & Service Operations Management, INFORMS, vol. 22(3), pages 461-480, May.
  • Handle: RePEc:inm:ormsom:v:22:y:2020:i:3:p:461-480
    DOI: 10.1287/msom.2018.0756
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/msom.2018.0756
    Download Restriction: no

    File URL: https://libkey.io/10.1287/msom.2018.0756?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vineet Goyal & Retsef Levi & Danny Segev, 2016. "Near-Optimal Algorithms for the Assortment Planning Problem Under Dynamic Substitution and Stochastic Demand," Operations Research, INFORMS, vol. 64(1), pages 219-235, February.
    2. Fernando Bernstein & A. Gürhan Kök & Lei Xie, 2015. "Dynamic Assortment Customization with Limited Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 538-553, October.
    3. Garrett van Ryzin & Siddharth Mahajan, 1999. "On the Relationship Between Inventory Costs and Variety Benefits in Retail Assortments," Management Science, INFORMS, vol. 45(11), pages 1496-1509, November.
    4. Paat Rusmevichientong & David Shmoys & Chaoxu Tong & Huseyin Topaloglu, 2014. "Assortment Optimization under the Multinomial Logit Model with Random Choice Parameters," Production and Operations Management, Production and Operations Management Society, vol. 23(11), pages 2023-2039, November.
    5. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    6. Huseyin Topaloglu, 2009. "Using Lagrangian Relaxation to Compute Capacity-Dependent Bid Prices in Network Revenue Management," Operations Research, INFORMS, vol. 57(3), pages 637-649, June.
    7. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    8. Gabriel Bitran & René Caldentey, 2003. "An Overview of Pricing Models for Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 203-229, August.
    9. Siddharth Mahajan & Garrett van Ryzin, 2001. "Stocking Retail Assortments Under Dynamic Consumer Substitution," Operations Research, INFORMS, vol. 49(3), pages 334-351, June.
    10. Guang Li & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "The d -Level Nested Logit Model: Assortment and Price Optimization Problems," Operations Research, INFORMS, vol. 63(2), pages 325-342, April.
    11. Guillermo Gallego & Huseyin Topaloglu, 2014. "Constrained Assortment Optimization for the Nested Logit Model," Management Science, INFORMS, vol. 60(10), pages 2583-2601, October.
    12. Shipra Agrawal & Zizhuo Wang & Yinyu Ye, 2014. "A Dynamic Near-Optimal Algorithm for Online Linear Programming," Operations Research, INFORMS, vol. 62(4), pages 876-890, August.
    13. Serguei Netessine & Sergei Savin & Wenqiang Xiao, 2006. "Revenue Management Through Dynamic Cross Selling in E-Commerce Retailing," Operations Research, INFORMS, vol. 54(5), pages 893-913, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xijia Liu & Xiaoshu Liu & Anna Shi & Chenwei Li, 2023. "Agricultural Products’ Bundled Pricing Based on Consumers’ Organic Preferences," Sustainability, MDPI, vol. 15(17), pages 1-14, September.
    2. Theja Tulabandhula & Deeksha Sinha & Saketh Reddy Karra & Prasoon Patidar, 2020. "Multi-Purchase Behavior: Modeling, Estimation and Optimization," Papers 2006.08055, arXiv.org, revised Aug 2023.
    3. Kevin K. Wang & Michael D. Wittman & Thomas Fiig, 2023. "Dynamic offer creation for airline ancillaries using a Markov chain choice model," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 22(2), pages 103-121, April.
    4. Debjit Roy & Eirini Spiliotopoulou & Jelle de Vries, 2022. "Restaurant analytics: Emerging practice and research opportunities," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3687-3709, October.
    5. Long He & Sheng Liu & Zuo‐Jun Max Shen, 2022. "Smart urban transport and logistics: A business analytics perspective," Production and Operations Management, Production and Operations Management Society, vol. 31(10), pages 3771-3787, October.
    6. Tao, Jiawei & Dai, Hongyan & Chen, Weiwei & Jiang, Hai, 2023. "The value of personalized dispatch in O2O on-demand delivery services," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1022-1035.
    7. Xia, Lan & Bechwati, Nada Nasr, 2021. "Maximizing what? The effect of maximizing mindset on the evaluation of product bundles," Journal of Business Research, Elsevier, vol. 128(C), pages 314-325.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çömez-Dolgan, Nagihan & Moussawi-Haidar, Lama & Jaber, Mohamad Y. & Cephe, Ecem, 2022. "Capacitated assortment planning of a multi-location system under transshipments," International Journal of Production Economics, Elsevier, vol. 251(C).
    2. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    3. Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "Dynamic Assortment Optimization for Reusable Products with Random Usage Durations," Management Science, INFORMS, vol. 66(7), pages 2820-2844, July.
    4. Çömez-Dolgan, Nagihan & Fescioglu-Unver, Nilgun & Cephe, Ecem & Şen, Alper, 2021. "Capacitated strategic assortment planning under explicit demand substitution," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1120-1138.
    5. Çömez-Dolgan, Nagihan & Dağ, Hilal & Fescioglu-Unver, Nilgun & Şen, Alper, 2023. "Multi-plant manufacturing assortment planning in the presence of transshipments," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1033-1050.
    6. Mehrani, Saharnaz & Sefair, Jorge A., 2022. "Robust assortment optimization under sequential product unavailability," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1027-1043.
    7. Xi Chen & Zachary Owen & Clark Pixton & David Simchi-Levi, 2022. "A Statistical Learning Approach to Personalization in Revenue Management," Management Science, INFORMS, vol. 68(3), pages 1923-1937, March.
    8. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    9. Fernando Bernstein & A. Gürhan Kök & Lei Xie, 2015. "Dynamic Assortment Customization with Limited Inventories," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 538-553, October.
    10. Kris Johnson Ferreira & Joel Goh, 2021. "Assortment Rotation and the Value of Concealment," Management Science, INFORMS, vol. 67(3), pages 1489-1507, March.
    11. Ali Aouad & Retsef Levi & Danny Segev, 2019. "Approximation Algorithms for Dynamic Assortment Optimization Models," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 487-511, May.
    12. Xi Chen & Chao Shi & Yining Wang & Yuan Zhou, 2021. "Dynamic Assortment Planning Under Nested Logit Models," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 85-102, January.
    13. Flores, Alvaro & Berbeglia, Gerardo & Van Hentenryck, Pascal, 2019. "Assortment optimization under the Sequential Multinomial Logit Model," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1052-1064.
    14. Laurent Alfandari & Alborz Hassanzadeh & Ivana Ljubić, 2021. "An Exact Method for Assortment Optimization under the Nested Logit Model," Working Papers hal-02463159, HAL.
    15. Ali Aouad & Vivek Farias & Retsef Levi, 2021. "Assortment Optimization Under Consider-Then-Choose Choice Models," Management Science, INFORMS, vol. 67(6), pages 3368-3386, June.
    16. Ding, Xiaohui & Chen, Caihua & Li, Chongshou & Lim, Andrew, 2021. "Product demand estimation for vending machines using video surveillance data: A group-lasso method," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    17. James M. Davis & Guillermo Gallego & Huseyin Topaloglu, 2014. "Assortment Optimization Under Variants of the Nested Logit Model," Operations Research, INFORMS, vol. 62(2), pages 250-273, April.
    18. Alfandari, Laurent & Hassanzadeh, Alborz & Ljubic, Ivana, 2020. "An Exact Method for Assortment Optimization under the Nested Logit Model," ESSEC Working Papers WP2001, ESSEC Research Center, ESSEC Business School, revised 2020.
    19. Hekimoğlu, Mustafa & Sevim, Ismail & Aksezer, Çağlar & Durmuş, İpek, 2019. "Assortment optimization with log-linear demand: Application at a Turkish grocery store," Journal of Retailing and Consumer Services, Elsevier, vol. 50(C), pages 199-214.
    20. Amr Farahat & Joonkyum Lee, 2018. "The Multiproduct Newsvendor Problem with Customer Choice," Operations Research, INFORMS, vol. 66(1), pages 123-136, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:22:y:2020:i:3:p:461-480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.