IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v59y2011i1p66-79.html
   My bibliography  Save this article

On the Minimax Complexity of Pricing in a Changing Environment

Author

Listed:
  • Omar Besbes

    (Graduate School of Business, Columbia University, New York, New York 10027)

  • Assaf Zeevi

    (Graduate School of Business, Columbia University, New York, New York 10027)

Abstract

We consider a pricing problem in an environment where the customers' willingness-to-pay (WtP) distribution may change at some point over the selling horizon. Customers arrive sequentially and make purchase decisions based on a quoted price and their private reservation price. The seller knows the WtP distribution pre- and postchange but does not know the time at which this change occurs. The performance of a pricing policy is measured in terms of regret: the loss in revenues relative to an oracle that knows the time of change prior to the start of the selling season. We derive lower bounds on the worst-case regret and develop pricing strategies that achieve the order of these bounds, thus establishing the complexity of the pricing problem. Our results shed light on the role of price experimentation and its necessity for optimal detection of changes in market response/WtP. Our formulation allows for essentially arbitrary consumer WtP distributions and purchase request patterns.

Suggested Citation

  • Omar Besbes & Assaf Zeevi, 2011. "On the Minimax Complexity of Pricing in a Changing Environment," Operations Research, INFORMS, vol. 59(1), pages 66-79, February.
  • Handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:66-79
    DOI: 10.1287/opre.1100.0867
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1100.0867
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1100.0867?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Godfrey Keller & Sven Rady, 1999. "Optimal Experimentation in a Changing Environment," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 66(3), pages 475-507.
    2. Bayraktar, Erhan & Dayanik, Savas & Karatzas, Ioannis, 2005. "The standard Poisson disorder problem revisited," Stochastic Processes and their Applications, Elsevier, vol. 115(9), pages 1437-1450, September.
    3. Guillermo Gallego & Garrett van Ryzin, 1997. "A Multiproduct Dynamic Pricing Problem and Its Applications to Network Yield Management," Operations Research, INFORMS, vol. 45(1), pages 24-41, February.
    4. Omar Besbes & Robert Phillips & Assaf Zeevi, 2010. "Testing the Validity of a Demand Model: An Operations Perspective," Manufacturing & Service Operations Management, INFORMS, vol. 12(1), pages 162-183, June.
    5. Tatsiana Levina & Yuri Levin & Jeff McGill & Mikhail Nediak, 2009. "Dynamic Pricing with Online Learning and Strategic Consumers: An Application of the Aggregating Algorithm," Operations Research, INFORMS, vol. 57(2), pages 327-341, April.
    6. Omar Besbes & Assaf Zeevi, 2009. "Dynamic Pricing Without Knowing the Demand Function: Risk Bounds and Near-Optimal Algorithms," Operations Research, INFORMS, vol. 57(6), pages 1407-1420, December.
    7. Kalyan Talluri, 2009. "A finite-population revenue management model and a risk-ratio procedure for the joint estimation of population size and parameters," Economics Working Papers 1141, Department of Economics and Business, Universitat Pompeu Fabra.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar Besbes & Assaf Zeevi, 2012. "Blind Network Revenue Management," Operations Research, INFORMS, vol. 60(6), pages 1537-1550, December.
    2. Giovanni Gatti Pinheiro & Thomas Fiig & Michael D. Wittman & Michael Defoin-Platel & Riccardo D. Jadanza, 2022. "Demand change detection in airline revenue management," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(6), pages 581-595, December.
    3. Arnoud V. den Boer & N. Bora Keskin, 2020. "Discontinuous Demand Functions: Estimation and Pricing," Management Science, INFORMS, vol. 66(10), pages 4516-4534, October.
    4. Moshe Haviv & Ramandeep S. Randhawa, 2014. "Pricing in Queues Without Demand Information," Manufacturing & Service Operations Management, INFORMS, vol. 16(3), pages 401-411, July.
    5. Kasberger, Bernhard & Woodward, Kyle, 2021. "Bidding in Multi-Unit Auctions under Limited Information," MPRA Paper 111185, University Library of Munich, Germany.
    6. Arnoud V. den Boer & Bert Zwart, 2015. "Dynamic Pricing and Learning with Finite Inventories," Operations Research, INFORMS, vol. 63(4), pages 965-978, August.
    7. Benjamin R. Handel & Kanishka Misra, 2015. "Robust New Product Pricing," Marketing Science, INFORMS, vol. 34(6), pages 864-881, November.
    8. den Boer, Arnoud V., 2015. "Tracking the market: Dynamic pricing and learning in a changing environment," European Journal of Operational Research, Elsevier, vol. 247(3), pages 914-927.
    9. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    10. N. Bora Keskin & Assaf Zeevi, 2014. "Dynamic Pricing with an Unknown Demand Model: Asymptotically Optimal Semi-Myopic Policies," Operations Research, INFORMS, vol. 62(5), pages 1142-1167, October.
    11. Omar Besbes & Denis Sauré, 2014. "Dynamic Pricing Strategies in the Presence of Demand Shifts," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 513-528, October.
    12. Kazemi, Mohammad Sadegh & Fotopoulos, Stergios B. & Wang, Xinchang, 2023. "Minimizing online retailers’ revenue loss under a time-varying willingness-to-pay distribution," International Journal of Production Economics, Elsevier, vol. 257(C).
    13. Omar Besbes & Yonatan Gur & Assaf Zeevi, 2015. "Non-Stationary Stochastic Optimization," Operations Research, INFORMS, vol. 63(5), pages 1227-1244, October.
    14. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    15. Yusen Xia & Jian Yang & Tingting Zhou, 2019. "Revenue management under randomly evolving economic conditions," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(1), pages 73-89, February.
    16. Wang Chi Cheung & Will Ma & David Simchi-Levi & Xinshang Wang, 2022. "Inventory Balancing with Online Learning," Management Science, INFORMS, vol. 68(3), pages 1776-1807, March.
    17. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    18. Josef Broder & Paat Rusmevichientong, 2012. "Dynamic Pricing Under a General Parametric Choice Model," Operations Research, INFORMS, vol. 60(4), pages 965-980, August.
    19. Ying Zhong & L. Jeff Hong & Guangwu Liu, 2021. "Earning and Learning with Varying Cost," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2379-2394, August.
    20. H. Müge Yayla‐Küllü & Jennifer K. Ryan & Jayashankar M. Swaminathan, 2021. "Product Line Flexibility for Agile and Adaptable Operations," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 725-737, March.
    21. Xuejun Zhao & Ruihao Zhu & William B. Haskell, 2022. "Learning to Price Supply Chain Contracts against a Learning Retailer," Papers 2211.04586, arXiv.org.
    22. N. Bora Keskin & Yuexing Li & Jing-Sheng Song, 2022. "Data-Driven Dynamic Pricing and Ordering with Perishable Inventory in a Changing Environment," Management Science, INFORMS, vol. 68(3), pages 1938-1958, March.
    23. Boxiao Chen, 2021. "Data‐Driven Inventory Control with Shifting Demand," Production and Operations Management, Production and Operations Management Society, vol. 30(5), pages 1365-1385, May.
    24. Arnoud V. den Boer, 2014. "Dynamic Pricing with Multiple Products and Partially Specified Demand Distribution," Mathematics of Operations Research, INFORMS, vol. 39(3), pages 863-888, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Omar Besbes & Denis Sauré, 2014. "Dynamic Pricing Strategies in the Presence of Demand Shifts," Manufacturing & Service Operations Management, INFORMS, vol. 16(4), pages 513-528, October.
    2. J. Michael Harrison & N. Bora Keskin & Assaf Zeevi, 2012. "Bayesian Dynamic Pricing Policies: Learning and Earning Under a Binary Prior Distribution," Management Science, INFORMS, vol. 58(3), pages 570-586, March.
    3. William L. Cooper & Tito Homem-de-Mello & Anton J. Kleywegt, 2015. "Learning and Pricing with Models That Do Not Explicitly Incorporate Competition," Operations Research, INFORMS, vol. 63(1), pages 86-103, February.
    4. Yiwei Chen & Vivek F. Farias, 2013. "Simple Policies for Dynamic Pricing with Imperfect Forecasts," Operations Research, INFORMS, vol. 61(3), pages 612-624, June.
    5. Xiao, Baichun & Yang, Wei, 2021. "A Bayesian learning model for estimating unknown demand parameter in revenue management," European Journal of Operational Research, Elsevier, vol. 293(1), pages 248-262.
    6. Soonhui Lee & Tito Homem-de-Mello & Anton Kleywegt, 2012. "Newsvendor-type models with decision-dependent uncertainty," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 76(2), pages 189-221, October.
    7. Talebian, Masoud & Boland, Natashia & Savelsbergh, Martin, 2014. "Pricing to accelerate demand learning in dynamic assortment planning for perishable products," European Journal of Operational Research, Elsevier, vol. 237(2), pages 555-565.
    8. Arthur Charpentier & Romuald Élie & Carl Remlinger, 2023. "Reinforcement Learning in Economics and Finance," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 425-462, June.
    9. Stefanus Jasin, 2014. "Reoptimization and Self-Adjusting Price Control for Network Revenue Management," Operations Research, INFORMS, vol. 62(5), pages 1168-1178, October.
    10. Yang, Chaolin & Xiong, Yi, 2020. "Nonparametric advertising budget allocation with inventory constraint," European Journal of Operational Research, Elsevier, vol. 285(2), pages 631-641.
    11. Omar Besbes & Assaf Zeevi, 2015. "On the (Surprising) Sufficiency of Linear Models for Dynamic Pricing with Demand Learning," Management Science, INFORMS, vol. 61(4), pages 723-739, April.
    12. N. Bora Keskin & Assaf Zeevi, 2017. "Chasing Demand: Learning and Earning in a Changing Environment," Mathematics of Operations Research, INFORMS, vol. 42(2), pages 277-307, May.
    13. Qi (George) Chen & Stefanus Jasin & Izak Duenyas, 2019. "Nonparametric Self-Adjusting Control for Joint Learning and Optimization of Multiproduct Pricing with Finite Resource Capacity," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 601-631, May.
    14. Arnoud V. den Boer & Bert Zwart, 2014. "Simultaneously Learning and Optimizing Using Controlled Variance Pricing," Management Science, INFORMS, vol. 60(3), pages 770-783, March.
    15. Yiwei Chen & Cong Shi, 2023. "Network revenue management with online inverse batch gradient descent method," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2123-2137, July.
    16. Ming Chen & Zhi-Long Chen, 2018. "Robust Dynamic Pricing with Two Substitutable Products," Manufacturing & Service Operations Management, INFORMS, vol. 20(2), pages 249-268, May.
    17. Omar Besbes & Assaf Zeevi, 2012. "Blind Network Revenue Management," Operations Research, INFORMS, vol. 60(6), pages 1537-1550, December.
    18. Renato Matta & Timothy J. Lowe, 2023. "Product price alignment with seller service rating and consumer satisfaction," Annals of Operations Research, Springer, vol. 320(2), pages 695-725, January.
    19. Michael N. Katehakis & Yifeng Liu & Jian Yang, 2022. "A revisit to the markup practice of irreversible dynamic pricing," Annals of Operations Research, Springer, vol. 317(1), pages 77-105, October.
    20. Philipp Afèche & Barış Ata, 2013. "Bayesian Dynamic Pricing in Queueing Systems with Unknown Delay Cost Characteristics," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 292-304, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:59:y:2011:i:1:p:66-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.