IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v68y2022i10p7090-7111.html
   My bibliography  Save this article

Decision Forest: A Nonparametric Approach to Modeling Irrational Choice

Author

Listed:
  • Yi-Chun Chen

    (University of California, Los Angeles Anderson School of Management, University of California, Los Angeles, California 90095)

  • Velibor V. Mišić

    (University of California, Los Angeles Anderson School of Management, University of California, Los Angeles, California 90095)

Abstract

Customer behavior is often assumed to follow weak rationality, which implies that adding a product to an assortment will not increase the choice probability of another product in that assortment. However, an increasing amount of research has revealed that customers are not necessarily rational when making decisions. In this paper, we propose a new nonparametric choice model that relaxes this assumption and can model a wider range of customer behavior, such as decoy effects between products. In this model, each customer type is associated with a binary decision tree, which represents a decision process for making a purchase based on checking for the existence of specific products in the assortment. Together with a probability distribution over customer types, we show that the resulting model—a decision forest —is able to represent any customer choice model, including models that are inconsistent with weak rationality. We theoretically characterize the depth of the forest needed to fit a data set of historical assortments and prove that with high probability, a forest whose depth scales logarithmically in the number of assortments is sufficient to fit most data sets. We also propose two practical algorithms—one based on column generation and one based on random sampling—for estimating such models from data. Using synthetic data and real transaction data exhibiting nonrational behavior, we show that the model outperforms both rational and nonrational benchmark models in out-of-sample predictive ability.

Suggested Citation

  • Yi-Chun Chen & Velibor V. Mišić, 2022. "Decision Forest: A Nonparametric Approach to Modeling Irrational Choice," Management Science, INFORMS, vol. 68(10), pages 7090-7111, October.
  • Handle: RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7090-7111
    DOI: 10.1287/mnsc.2021.4256
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2021.4256
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2021.4256?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Simonson, Itamar, 1989. "Choice Based on Reasons: The Case of Attraction and Compromise Effects," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 16(2), pages 158-174, September.
    2. Ali Aouad & Vivek Farias & Retsef Levi, 2021. "Assortment Optimization Under Consider-Then-Choose Choice Models," Management Science, INFORMS, vol. 67(6), pages 3368-3386, June.
    3. Jörg Rieskamp & Jerome R. Busemeyer & Barbara A. Mellers, 2006. "Extending the Bounds of Rationality: Evidence and Theories of Preferential Choice," Journal of Economic Literature, American Economic Association, vol. 44(3), pages 631-661, September.
    4. Jacob Feldman & Alice Paul & Huseyin Topaloglu, 2019. "Technical Note—Assortment Optimization with Small Consideration Sets," Operations Research, INFORMS, vol. 67(5), pages 1283-1299, September.
    5. Negin Golrezaei & Hamid Nazerzadeh & Paat Rusmevichientong, 2014. "Real-Time Optimization of Personalized Assortments," Management Science, INFORMS, vol. 60(6), pages 1532-1551, June.
    6. Xu, Yongsheng & Zhou, Lin, 2007. "Rationalizability of choice functions by game trees," Journal of Economic Theory, Elsevier, vol. 134(1), pages 548-556, May.
    7. Vivek F. Farias & Srikanth Jagabathula & Devavrat Shah, 2013. "A Nonparametric Approach to Modeling Choice with Limited Data," Management Science, INFORMS, vol. 59(2), pages 305-322, December.
    8. Karthik Natarajan & Miao Song & Chung-Piaw Teo, 2009. "Persistency Model and Its Applications in Choice Modeling," Management Science, INFORMS, vol. 55(3), pages 453-469, March.
    9. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    10. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    11. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
    12. Li, Jiangtao & Tang, Rui, 2017. "Every random choice rule is backwards-induction rationalizable," Games and Economic Behavior, Elsevier, vol. 104(C), pages 563-567.
    13. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
    14. Hauser, John R., 2014. "Consideration-set heuristics," Journal of Business Research, Elsevier, vol. 67(8), pages 1688-1699.
    15. Jacob B. Feldman & Huseyin Topaloglu, 2017. "Revenue Management Under the Markov Chain Choice Model," Operations Research, INFORMS, vol. 65(5), pages 1322-1342, October.
    16. Bart J. Bronnenberg & Carl F. Mela, 2004. "Market Roll-Out and Retailer Adoption for New Brands," Marketing Science, INFORMS, vol. 23(4), pages 500-518, September.
    17. Jose Blanchet & Guillermo Gallego & Vineet Goyal, 2016. "A Markov Chain Approximation to Choice Modeling," Operations Research, INFORMS, vol. 64(4), pages 886-905, August.
    18. H.D. Block & Jacob Marschak, 1959. "Random Orderings and Stochastic Theories of Response," Cowles Foundation Discussion Papers 66, Cowles Foundation for Research in Economics, Yale University.
    19. Huber, Joel & Payne, John W & Puto, Christopher, 1982. "Adding Asymmetrically Dominated Alternatives: Violations of Regularity and the Similarity Hypothesis," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 9(1), pages 90-98, June.
    20. Echenique, Federico & Saito, Kota & Tserenjigmid, Gerelt, 2018. "The perception-adjusted Luce model," Mathematical Social Sciences, Elsevier, vol. 93(C), pages 67-76.
    21. Vinit Kumar Mishra & Karthik Natarajan & Dhanesh Padmanabhan & Chung-Piaw Teo & Xiaobo Li, 2014. "On Theoretical and Empirical Aspects of Marginal Distribution Choice Models," Management Science, INFORMS, vol. 60(6), pages 1511-1531, June.
    22. Vincent R. Nijs & Shuba Srinivasan & Koen Pauwels, 2007. "Retail-Price Drivers and Retailer Profits," Marketing Science, INFORMS, vol. 26(4), pages 473-487, 07-08.
    23. Amos Tversky & Itamar Simonson, 1993. "Context-Dependent Preferences," Management Science, INFORMS, vol. 39(10), pages 1179-1189, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanjay Dominik Jena & Andrea Lodi & Claudio Sole, 2021. "On the estimation of discrete choice models to capture irrational customer behaviors," Papers 2109.03882, arXiv.org.
    2. Sanjay Dominik Jena & Andrea Lodi & Claudio Sole, 2022. "On the Estimation of Discrete Choice Models to Capture Irrational Customer Behaviors," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1606-1625, May.
    3. Kameng Nip & Zhenbo Wang & Zizhuo Wang, 2021. "Assortment Optimization under a Single Transition Choice Model," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2122-2142, July.
    4. Ningyuan Chen & Guillermo Gallego & Zhuodong Tang, 2019. "The Use of Binary Choice Forests to Model and Estimate Discrete Choices," Papers 1908.01109, arXiv.org, revised Apr 2024.
    5. Qi Feng & J. George Shanthikumar & Mengying Xue, 2022. "Consumer Choice Models and Estimation: A Review and Extension," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 847-867, February.
    6. Çömez-Dolgan, Nagihan & Fescioglu-Unver, Nilgun & Cephe, Ecem & Şen, Alper, 2021. "Capacitated strategic assortment planning under explicit demand substitution," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1120-1138.
    7. Strauss, Arne K. & Klein, Robert & Steinhardt, Claudius, 2018. "A review of choice-based revenue management: Theory and methods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 375-387.
    8. Ryan Webb & Paul W. Glimcher & Kenway Louie, 2021. "The Normalization of Consumer Valuations: Context-Dependent Preferences from Neurobiological Constraints," Management Science, INFORMS, vol. 67(1), pages 93-125, January.
    9. Antoine Désir & Vineet Goyal & Danny Segev & Chun Ye, 2020. "Constrained Assortment Optimization Under the Markov Chain–based Choice Model," Management Science, INFORMS, vol. 66(2), pages 698-721, February.
    10. Bechler, Georg & Steinhardt, Claudius & Mackert, Jochen & Klein, Robert, 2021. "Product line optimization in the presence of preferences for compromise alternatives," European Journal of Operational Research, Elsevier, vol. 288(3), pages 902-917.
    11. Guiyun Feng & Xiaobo Li & Zizhuo Wang, 2017. "Technical Note—On the Relation Between Several Discrete Choice Models," Operations Research, INFORMS, vol. 65(6), pages 1516-1525, December.
    12. Stephane Hess & Andrew Daly & Richard Batley, 2018. "Revisiting consistency with random utility maximisation: theory and implications for practical work," Theory and Decision, Springer, vol. 84(2), pages 181-204, March.
    13. Jerome R. Busemeyer & Jörg Rieskamp, 2014. "Psychological research and theories on preferential choice," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 3, pages 49-72, Edward Elgar Publishing.
    14. Meng Qi & Ho‐Yin Mak & Zuo‐Jun Max Shen, 2020. "Data‐driven research in retail operations—A review," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(8), pages 595-616, December.
    15. Nathan Kallus & Madeleine Udell, 2020. "Dynamic Assortment Personalization in High Dimensions," Operations Research, INFORMS, vol. 68(4), pages 1020-1037, July.
    16. Dam, Tien Thanh & Ta, Thuy Anh & Mai, Tien, 2023. "Robust maximum capture facility location under random utility maximization models," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1128-1150.
    17. Will Ma, 2023. "When Is Assortment Optimization Optimal?," Management Science, INFORMS, vol. 69(4), pages 2088-2105, April.
    18. Arjun Seshadri & Johan Ugander, 2020. "Fundamental Limits of Testing the Independence of Irrelevant Alternatives in Discrete Choice," Papers 2001.07042, arXiv.org.
    19. Xi Chen & Chao Shi & Yining Wang & Yuan Zhou, 2021. "Dynamic Assortment Planning Under Nested Logit Models," Production and Operations Management, Production and Operations Management Society, vol. 30(1), pages 85-102, January.
    20. Tserenjigmid, Gerelt, 2019. "Choosing with the worst in mind: A reference-dependent model," Journal of Economic Behavior & Organization, Elsevier, vol. 157(C), pages 631-652.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:68:y:2022:i:10:p:7090-7111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.