Advanced Search
MyIDEAS: Login to save this article or follow this journal

Detecting Management Fraud in Public Companies

Contents:

Author Info

  • Mark Cecchini

    ()
    (School of Accounting, Darla Moore School of Business, University of South Carolina, Columbia, South Carolina 29208)

  • Haldun Aytug

    ()
    (Information Systems and Operations Management, Warrington College of Business Administration, University of Florida, Gainesville, Florida 32611)

  • Gary J. Koehler

    ()
    (Information Systems and Operations Management, Warrington College of Business Administration, University of Florida, Gainesville, Florida 32611)

  • Praveen Pathak

    ()
    (Information Systems and Operations Management, Warrington College of Business Administration, University of Florida, Gainesville, Florida 32611)

Registered author(s):

    Abstract

    This paper provides a methodology for detecting management fraud using basic financial data. The methodology is based on support vector machines. An important aspect therein is a kernel that increases the power of the learning machine by allowing an implicit and generally nonlinear mapping of points, usually into a higher dimensional feature space. A kernel specific to the domain of finance is developed. This financial kernel constructs features shown in prior research to be helpful in detecting management fraud. A large empirical data set was collected, which included quantitative financial attributes for fraudulent and nonfraudulent public companies. Support vector machines using the financial kernel correctly labeled 80% of the fraudulent cases and 90.6% of the nonfraudulent cases on a holdout set. Furthermore, we replicate other leading fraud research studies using our data and find that our method has the highest accuracy on fraudulent cases and competitive accuracy on nonfraudulent cases. The results validate the financial kernel together with support vector machines as a useful method for discriminating between fraudulent and nonfraudulent companies using only publicly available quantitative financial attributes. The results also show that the methodology has predictive value because, using only historical data, it was able to distinguish fraudulent from nonfraudulent companies in subsequent years.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://dx.doi.org/10.1287/mnsc.1100.1174
    Download Restriction: no

    Bibliographic Info

    Article provided by INFORMS in its journal Management Science.

    Volume (Year): 56 (2010)
    Issue (Month): 7 (July)
    Pages: 1146-1160

    as in new window
    Handle: RePEc:inm:ormnsc:v:56:y:2010:i:7:p:1146-1160

    Contact details of provider:
    Postal: 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA
    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Email:
    Web page: http://www.informs.org/
    More information through EDIRC

    Related research

    Keywords: management fraud; classification; support vector machines; financial event detection; kernel methods;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Ion IVAN & Cristian CIUREA & Mihai DOINEA & Arthur AVRAMIEA, 2012. "Collaborative Management of Risks and Complexity in Banking Systems," Informatica Economica, Academy of Economic Studies - Bucharest, Romania, vol. 16(2), pages 128-141.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:56:y:2010:i:7:p:1146-1160. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.