IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v29y1983i8p942-950.html
   My bibliography  Save this article

Simple Approaches to Shift, Days-Off and Tour Scheduling Problems

Author

Listed:
  • James G. Morris

    (University of Wisconsin, Madison)

  • Michael J. Showalter

    (Florida State University)

Abstract

Shift and days-off scheduling problems have received much attention in the literature of integer programming approaches to workforce scheduling. A typical managerial use would be to schedule full-time employees to minimize the number of labor hours while satisfying variable workforce requirements of a service delivery system. We present computational experience to show that an easily implemented application of linear programming frequently produces optimal solutions to these problems. When the context progresses toward a continuous operating environment (service delivery over 24 hours a day, 7 days a week) we stress the need to shed the myopic views of the shift and days-off scheduling formulations in favor of an integrative tour scheduling formulation. For this problem we observe that a simple heuristic initiated by rounding down the associated LP solution consistently produces near optimal solutions. This observation is based on experiments over varying workforce requirement patterns.

Suggested Citation

  • James G. Morris & Michael J. Showalter, 1983. "Simple Approaches to Shift, Days-Off and Tour Scheduling Problems," Management Science, INFORMS, vol. 29(8), pages 942-950, August.
  • Handle: RePEc:inm:ormnsc:v:29:y:1983:i:8:p:942-950
    DOI: 10.1287/mnsc.29.8.942
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.29.8.942
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.29.8.942?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiun-Yan Shiau & Ming-Kung Huang & Chu-Yi Huang, 2020. "A Hybrid Personnel Scheduling Model for Staff Rostering Problems," Mathematics, MDPI, vol. 8(10), pages 1-20, October.
    2. Stephen E. Bechtold & Larry W. Jacobs, 1996. "The equivalence of general set‐covering and implicit integer programming formulations for shift scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 233-249, March.
    3. Tolga Çezik & Oktay Günlük & Hanan Luss, 2001. "An integer programming model for the weekly tour scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(7), pages 607-624, October.
    4. Marta Rocha & José Oliveira & Maria Carravilla, 2014. "A constructive heuristic for staff scheduling in the glass industry," Annals of Operations Research, Springer, vol. 217(1), pages 463-478, June.
    5. Brusco, Michael J. & Johns, Tony R., 1996. "A sequential integer programming method for discontinuous labor tour scheduling," European Journal of Operational Research, Elsevier, vol. 95(3), pages 537-548, December.
    6. Michael J. Brusco & Larry W. Jacobs, 1993. "A simulated annealing approach to the cyclic staff‐scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 69-84, February.
    7. María I. Restrepo & Bernard Gendron & Louis-Martin Rousseau, 2016. "Branch-and-Price for Personalized Multiactivity Tour Scheduling," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 334-350, May.
    8. Millar, Harvey H. & Kiragu, Mona, 1998. "Cyclic and non-cyclic scheduling of 12 h shift nurses by network programming," European Journal of Operational Research, Elsevier, vol. 104(3), pages 582-592, February.
    9. Michael J. Brusco & Larry W. Jacobs, 1998. "Personnel Tour Scheduling When Starting-Time Restrictions Are Present," Management Science, INFORMS, vol. 44(4), pages 534-547, April.
    10. Chia-Hung Chen & Shangyao Yan & Miawjane Chen, 2010. "Short-term manpower planning for MRT carriage maintenance under mixed deterministic and stochastic demands," Annals of Operations Research, Springer, vol. 181(1), pages 67-88, December.
    11. Fowler, John W. & Wirojanagud, Pornsarun & Gel, Esma S., 2008. "Heuristics for workforce planning with worker differences," European Journal of Operational Research, Elsevier, vol. 190(3), pages 724-740, November.
    12. Thompson, Gary M. & Pullman, Madeleine E., 2007. "Scheduling workforce relief breaks in advance versus in real-time," European Journal of Operational Research, Elsevier, vol. 181(1), pages 139-155, August.
    13. G Laporte & G Pesant, 2004. "A general multi-shift scheduling system," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(11), pages 1208-1217, November.
    14. Valls, Vicente & Angeles Perez, M. & Sacramento Quintanilla, M., 1998. "Pre-processing techniques for resource allocation in the heterogeneous case," European Journal of Operational Research, Elsevier, vol. 107(2), pages 470-491, June.
    15. Hua Ni & Hernán Abeledo, 2007. "A branch-and-price approach for large-scale employee tour scheduling problems," Annals of Operations Research, Springer, vol. 155(1), pages 167-176, November.
    16. Brusco, Michael J. & Jacobs, Larry W., 2001. "Starting-time decisions in labor tour scheduling: An experimental analysis and case study," European Journal of Operational Research, Elsevier, vol. 131(3), pages 459-475, June.
    17. Brusco, Michael J. & Jacobs, Larry W., 1995. "Cost analysis of alternative formulations for personnel scheduling in continuously operating organizations," European Journal of Operational Research, Elsevier, vol. 86(2), pages 249-261, October.
    18. Schirmer, Andreas, 1996. "New insights on the complexity of resource-constrained project scheduling: Two cases of multi-mode scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 391, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    19. Wright, P. Daniel & Mahar, Stephen, 2013. "Centralized nurse scheduling to simultaneously improve schedule cost and nurse satisfaction," Omega, Elsevier, vol. 41(6), pages 1042-1052.
    20. Lagodimos, A. G. & Leopoulos, V., 2000. "Greedy heuristic algorithms for manpower shift planning," International Journal of Production Economics, Elsevier, vol. 68(1), pages 95-106, October.
    21. Gary M. Thompson, 1997. "Labor staffing and scheduling models for controlling service levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(8), pages 719-740, December.
    22. Michael J. Brusco & Larry W. Jacobs, 2000. "Optimal Models for Meal-Break and Start-Time Flexibility in Continuous Tour Scheduling," Management Science, INFORMS, vol. 46(12), pages 1630-1641, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:29:y:1983:i:8:p:942-950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.