IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v43y1996i2p233-249.html
   My bibliography  Save this article

The equivalence of general set‐covering and implicit integer programming formulations for shift scheduling

Author

Listed:
  • Stephen E. Bechtold
  • Larry W. Jacobs

Abstract

In a recent article we demonstrated that implicit optimal modeling for shift scheduling (P2) has inherent size and execution time advantages over the general set‐covering formulation for shift scheduling (P1) [11, 13]. We postulated that the absence of extraordinary overlap (EO) was a requirement for the equivalence of P1 and P2. We have defined EO as the condition in which the earliest and latest starts for a break in one shift are earlier and later than the earliest and latest starts for a break in any other shift(s). In this article, we prove that our earlier postulate was accurate. Additionally, we discuss research extensions and note other scheduling problems for which implicit modeling may be appropriate. © 1996 John Wiley & Sons, Inc.

Suggested Citation

  • Stephen E. Bechtold & Larry W. Jacobs, 1996. "The equivalence of general set‐covering and implicit integer programming formulations for shift scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 43(2), pages 233-249, March.
  • Handle: RePEc:wly:navres:v:43:y:1996:i:2:p:233-249
    DOI: 10.1002/(SICI)1520-6750(199603)43:23.0.CO;2-B
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/(SICI)1520-6750(199603)43:23.0.CO;2-B
    Download Restriction: no

    File URL: https://libkey.io/10.1002/(SICI)1520-6750(199603)43:23.0.CO;2-B?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. William G. Nulty & H. Donald Ratliff, 1991. "Interactive optimization methodology for fleet scheduling," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 669-677, October.
    2. Matteo Fischetti & Silvano Martello & Paolo Toth, 1987. "The Fixed Job Schedule Problem with Spread-Time Constraints," Operations Research, INFORMS, vol. 35(6), pages 849-858, December.
    3. Gerald G. Brown & Clark E. Goodman & R. Kevin Wood, 1990. "Annual Scheduling of Atlantic Fleet Naval Combatants," Operations Research, INFORMS, vol. 38(2), pages 249-259, April.
    4. George B. Dantzig, 1954. "Letter to the Editor---A Comment on Edie's “Traffic Delays at Toll Booths”," Operations Research, INFORMS, vol. 2(3), pages 339-341, August.
    5. Beasley, J. E., 1987. "An algorithm for set covering problem," European Journal of Operational Research, Elsevier, vol. 31(1), pages 85-93, July.
    6. James G. Morris & Michael J. Showalter, 1983. "Simple Approaches to Shift, Days-Off and Tour Scheduling Problems," Management Science, INFORMS, vol. 29(8), pages 942-950, August.
    7. Willie B. Henderson & William L. Berry, 1976. "Heuristic Methods for Telephone Operator Shift Scheduling: An Experimental Analysis," Management Science, INFORMS, vol. 22(12), pages 1372-1380, August.
    8. Baker, Edward & Fisher, Michael, 1981. "Computational results for very large air crew scheduling problems," Omega, Elsevier, vol. 9(6), pages 613-618.
    9. Stephen E. Bechtold & Larry W. Jacobs, 1990. "Implicit Modeling of Flexible Break Assignments in Optimal Shift Scheduling," Management Science, INFORMS, vol. 36(11), pages 1339-1351, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Idris Addou & François Soumis, 2007. "Bechtold-Jacobs generalized model for shift scheduling with extraordinary overlap," Annals of Operations Research, Springer, vol. 155(1), pages 177-205, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brusco, Michael J. & Johns, Tony R., 1996. "A sequential integer programming method for discontinuous labor tour scheduling," European Journal of Operational Research, Elsevier, vol. 95(3), pages 537-548, December.
    2. Gary M. Thompson, 1997. "Labor staffing and scheduling models for controlling service levels," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(8), pages 719-740, December.
    3. Brusco, Michael J. & Jacobs, Larry W., 1995. "Cost analysis of alternative formulations for personnel scheduling in continuously operating organizations," European Journal of Operational Research, Elsevier, vol. 86(2), pages 249-261, October.
    4. Anuj Mehrotra & Kenneth E. Murphy & Michael A. Trick, 2000. "Optimal shift scheduling: A branch‐and‐price approach," Naval Research Logistics (NRL), John Wiley & Sons, vol. 47(3), pages 185-200, April.
    5. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    6. Aykin, Turgut, 2000. "A comparative evaluation of modeling approaches to the labor shift scheduling problem," European Journal of Operational Research, Elsevier, vol. 125(2), pages 381-397, September.
    7. Michael J. Brusco & Larry W. Jacobs, 2000. "Optimal Models for Meal-Break and Start-Time Flexibility in Continuous Tour Scheduling," Management Science, INFORMS, vol. 46(12), pages 1630-1641, December.
    8. Fowler, John W. & Wirojanagud, Pornsarun & Gel, Esma S., 2008. "Heuristics for workforce planning with worker differences," European Journal of Operational Research, Elsevier, vol. 190(3), pages 724-740, November.
    9. J. E. Beasley, 1990. "A lagrangian heuristic for set‐covering problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 37(1), pages 151-164, February.
    10. Robbins, Thomas R. & Harrison, Terry P., 2010. "A stochastic programming model for scheduling call centers with global Service Level Agreements," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1608-1619, December.
    11. María I. Restrepo & Bernard Gendron & Louis-Martin Rousseau, 2016. "Branch-and-Price for Personalized Multiactivity Tour Scheduling," INFORMS Journal on Computing, INFORMS, vol. 28(2), pages 334-350, May.
    12. A. Mingozzi & M. A. Boschetti & S. Ricciardelli & L. Bianco, 1999. "A Set Partitioning Approach to the Crew Scheduling Problem," Operations Research, INFORMS, vol. 47(6), pages 873-888, December.
    13. Michael J. Brusco & Larry W. Jacobs, 1998. "Personnel Tour Scheduling When Starting-Time Restrictions Are Present," Management Science, INFORMS, vol. 44(4), pages 534-547, April.
    14. Marta Rocha & José Oliveira & Maria Carravilla, 2014. "A constructive heuristic for staff scheduling in the glass industry," Annals of Operations Research, Springer, vol. 217(1), pages 463-478, June.
    15. Tolga Çezik & Oktay Günlük & Hanan Luss, 2001. "An integer programming model for the weekly tour scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(7), pages 607-624, October.
    16. Thompson, Gary M. & Pullman, Madeleine E., 2007. "Scheduling workforce relief breaks in advance versus in real-time," European Journal of Operational Research, Elsevier, vol. 181(1), pages 139-155, August.
    17. El-Darzi, Elia & Mitra, Gautam, 1995. "Graph theoretic relaxations of set covering and set partitioning problems," European Journal of Operational Research, Elsevier, vol. 87(1), pages 109-121, November.
    18. Hua Ni & Hernán Abeledo, 2007. "A branch-and-price approach for large-scale employee tour scheduling problems," Annals of Operations Research, Springer, vol. 155(1), pages 167-176, November.
    19. Michael J. Brusco & Larry W. Jacobs, 1993. "A simulated annealing approach to the cyclic staff‐scheduling problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(1), pages 69-84, February.
    20. Schirmer, Andreas, 1996. "New insights on the complexity of resource-constrained project scheduling: Two cases of multi-mode scheduling," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 391, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:43:y:1996:i:2:p:233-249. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.