Advanced Search
MyIDEAS: Login

Multinational Diffusion Models: An Alternative Framework


Author Info

  • V. Kumar

    (ING Aetna Center for Financial Services, School of Business, Department of Marketing, University of Connecticut, Storrs, Connecticut 06269-1041)

  • Trichy V. Krishnan

    (Rice University, 6100 Main, Houston, Texas, 77005)

Registered author(s):


    The literature on cross-national diffusion models is gaining increased importance today due to the needs of present day managers. New product sales growth in a given nation or society is affected by many factors (Rogers 1995), and of these, sociocontagion (or word of mouth) has been found to be the most important factor that characterizes the diffusion process (Bass 1969, Moore 1995). Hence, it is interesting and perhaps challenging to analyze what would happen if a new product diffuses in parallel in two neighboring but culturally different countries. Not only will we expect the diffusion process in the two countries to be different, but we will also expect some interaction among them, especially if the two societies mingle with each other. There are two streams of research in cross-national diffusion. The first type focuses on exploring the differences between diffusion processes in two countries and finding out whether those differences can be attributed to social and cultural differences between the countries involved. Examples of this type of research are found in Takada and Jain (1991), Gatignon et al. (1989), Helsen et al. (1993), and Kumar et al. (1998). These studies did find some relationship between the cultural differences of the countries studied and the differences in the diffusion process. The second stream of research focuses on modeling explicitly the interaction between the diffusion processes in two countries. The interaction is typically captured through lead-lag effect (Eliashberg and Helsen 1996, Kalish et al. 1995), where the sales process in the lead country (i.e., the country where the product was first introduced) is modeled to affect the sales process in the lag country (i.e., the country where the product was introduced a few years later). Another method to study the interaction among the diffusion processes in two countries was suggested by Putsis et al. (1997), who used a “mixing model” to empirically explore the existence of such interactions. These studies basically observed that, when a new product is introduced early in one country and with a time lag in subsequent countries, the consumers in the lag countries learn about the product from the lead country adopters, resulting in a faster diffusion rate in the lag countries. Ganesh and Kumar (1996) formulized this effect as the learning effect and, subsequently, Ganesh et al. (1997) found this learning effect to be influenced by country-specific factors (cultural similarity, economic similarity, and time lag elapsed between the lead and the lag countries) and product-specific factors (continuous vs. discontinuous innovation and the presence or absence of a standardized technology). A careful analysis of the extant literature on the second stream of research would reveal that neither the learning effect model nor the mixing model can be modified to accommodate the other model. Our contribution to the literature exactly addresses this point. In this paper, an alternative framework is proposed that has two unique features. First, the framework is flexible enough to not only account for the lead country affecting the lag countries and vice versa, but also to accommodate the simultaneous interaction among countries in explaining the diffusion processes in the countries concerned. Using multiple product categories and a variety of new product introduction situations, we empirically demonstrate the flexibility and efficiency of our proposed framework. We found strong evidence of all types of interactions, namely, lead lag, lag lead, and simultaneous, which evidence suggests that one cannot afford to omit any of the interactions. The second unique feature of our paper is the estimation procedure that we used. Because statistical estimation of a dynamic process that includes lead-lag, lag-lead, and simultaneous types of causality within a single framework is not straightforward, we suggest an iterative estimation procedure for the estimation. This new procedure not only proved to be flexible in accommodating different types of interaction, but also converged rather quickly in all of the cases that we empirically tested. Noting that the statistical properties of these estimators are not generally available, we carried out a simulation exercise that clearly revealed the efficiency of the proposed estimation procedure. After analyzing the interaction, we went further and showed that the magnitude of the cross-national influences is affected by certain country-specific and product-specific factors. The flexibility of the proposed method over the existing methods is demonstrated through obtaining superior forecasts with the proposed method. Several interesting insights for managers concerned with formulating international marketing strategies are offered.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    Download Restriction: no

    Bibliographic Info

    Article provided by INFORMS in its journal Marketing Science.

    Volume (Year): 21 (2002)
    Issue (Month): 3 (July)
    Pages: 318-330

    as in new window
    Handle: RePEc:inm:ormksc:v:21:y:2002:i:3:p:318-330

    Contact details of provider:
    Postal: 7240 Parkway Drive, Suite 300, Hanover, MD 21076 USA
    Phone: +1-443-757-3500
    Fax: 443-757-3515
    Web page:
    More information through EDIRC

    Related research

    Keywords: Multinational Diffusion; Iterative Estimation; Lead-Lag; Lag-Lead; and Simultaneous Effects; International Marketing Strategy;


    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Dalla Valle, Alessandra & Furlan, Claudia, 2011. "Forecasting accuracy of wind power technology diffusion models across countries," International Journal of Forecasting, Elsevier, vol. 27(2), pages 592-601, April.
    2. van den Bulte, C. & Stremersch, S., 2003. "Contagion and heterogeneity in new product diffusion: An emperical test," ERIM Report Series Research in Management ERS-2003-077-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus Uni.
    3. Meade, Nigel & Islam, Towhidul, 2006. "Modelling and forecasting the diffusion of innovation - A 25-year review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 519-545.
    4. Christos Michalakelis & Georgia Dede & Dimitris Varoutas & Thomas Sphicopoulos, 2010. "Estimating diffusion and price elasticity with application to telecommunications," Netnomics, Springer, vol. 11(3), pages 221-242, October.
    5. H.P. Boswijk & D. Fok & P.-H. Franses, 2006. "A New Multivariate Product Growth Model," Tinbergen Institute Discussion Papers 06-027/4, Tinbergen Institute.
    6. Peters, Kay & Albers, Sönke & Kumar, V., 2008. "Is there more to international Diffusion than Culture? An investigation on the Role of Marketing and Industry Variables," EconStor Preprints 27678, ZBW - German National Library of Economics.
    7. van Everdingen, Y.M. & Aghina, W.B., 2003. "Forecasting the international diffusion of innovations: An adaptive estimation approach," ERIM Report Series Research in Management ERS-2003-073-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus Uni.
    8. Pulkki-Brännström, Anni-Maria & Stoneman, Paul, 2013. "On the patterns and determinants of the global diffusion of new technologies," Research Policy, Elsevier, vol. 42(10), pages 1768-1779.
    9. van Everdingen, Y.M. & Fok, D. & Stremersch, S., 2008. "Modeling Global Spill-Over of New Product Takeoff," ERIM Report Series Research in Management ERS-2008-067-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus Uni.
    10. Michalakelis, C. & Sphicopoulos, T., 2012. "A population dependent diffusion model with a stochastic extension," International Journal of Forecasting, Elsevier, vol. 28(3), pages 587-606.
    11. Stremersch, S. & Lemmens, A., 2008. "Sales Growth of New Pharmaceuticals Across the Globe: The Role of Regulatory Regimes," ERIM Report Series Research in Management ERS-2008-026-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus Uni.
    12. Nora Lado & Fabrizio Cesaroni & Alberto Maydeu Olivares & Han Chiang Ho, 2011. "Understanding the role of attitude components in co-branding: an application to high-tech, luxury co-branded products," Business Economics Working Papers id-11-01, Universidad Carlos III, Instituto sobre Desarrollo Empresarial "Carmen Vidal Ballester".


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:inm:ormksc:v:21:y:2002:i:3:p:318-330. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mirko Janc).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.