IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v50y2020i5p298-312.html
   My bibliography  Save this article

Introduction: Empowering Denver Public Schools to Optimize School Bus Operations

Author

Listed:
  • Amanda Chu

    (Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Pinar Keskinocak

    (Georgia Institute of Technology, Atlanta, Georgia 30332)

  • Monica C. Villarreal

    (Denver Public Schools, Denver, Colorado 80203)

Abstract

Denver Public Schools (DPS) serves roughly 90,000 K–12 students using a mixed bus fleet. Developing and reviewing bus-route assignments manually has been challenging and time consuming for DPS. During 2017–2018, DPS analysts reviewed and adjusted over 700 routes assigned to approximately 200 buses, considering time and capacity feasibility. We developed a decision support tool (DST) to generate feasible bus-route assignments and help inform DPS’s decisions. The DST employs optimization models to solve the bus-route assignment problem using distance data from Google Maps Application Programming Interface and various interroute reposition-time scenarios to account for the impact of potential traffic delays. The model incorporates multiple objectives related to minimizing cost, meeting demand, and maximizing “consistency”—that is, the difference between a newly created and previously implemented solution The solutions generated by the DST for the 2017–2018 school year utilized significantly fewer buses and lower reposition mileage compared with the DPS solution. Considering the convenience, efficiency, and flexibility of generating high-quality bus-route assignments using the DST, the DPS transportation team has used the DST in the route planning process since 2018.

Suggested Citation

  • Amanda Chu & Pinar Keskinocak & Monica C. Villarreal, 2020. "Introduction: Empowering Denver Public Schools to Optimize School Bus Operations," Interfaces, INFORMS, vol. 50(5), pages 298-312, September.
  • Handle: RePEc:inm:orinte:v:50:y:2020:i:5:p:298-312
    DOI: 10.1287/inte.2020.1042
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/inte.2020.1042
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2020.1042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dimitris Bertsimas & Arthur Delarue & Sebastien Martin, 2019. "Optimizing schools’ start time and bus routes," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(13), pages 5943-5948, March.
    2. M. Spada & M. Bierlaire & Th. M. Liebling, 2005. "Decision-Aiding Methodology for the School Bus Routing and Scheduling Problem," Transportation Science, INFORMS, vol. 39(4), pages 477-490, November.
    3. Park, Junhyuk & Tae, Hyunchul & Kim, Byung-In, 2012. "A post-improvement procedure for the mixed load school bus routing problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 204-213.
    4. Newton, Rita M. & Thomas, Warren H., 1969. "Design of school bus routes by computer," Socio-Economic Planning Sciences, Elsevier, vol. 3(1), pages 75-85, June.
    5. Park, Junhyuk & Kim, Byung-In, 2010. "The school bus routing problem: A review," European Journal of Operational Research, Elsevier, vol. 202(2), pages 311-319, April.
    6. Lawrence D. Bodin & Lon Berman, 1979. "Routing and Scheduling of School Buses by Computer," Transportation Science, INFORMS, vol. 13(2), pages 113-129, May.
    7. Robert A. Russell & Reece B. Morrel, 1986. "Routing Special-Education School Buses," Interfaces, INFORMS, vol. 16(5), pages 56-64, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ellegood, William A. & Solomon, Stanislaus & North, Jeremy & Campbell, James F., 2020. "School bus routing problem: Contemporary trends and research directions," Omega, Elsevier, vol. 95(C).
    2. Kuo, Yong-Hong & Leung, Janny M.Y. & Yan, Yimo, 2023. "Public transport for smart cities: Recent innovations and future challenges," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1001-1026.
    3. Hernan Caceres & Rajan Batta & Qing He, 2017. "School Bus Routing with Stochastic Demand and Duration Constraints," Transportation Science, INFORMS, vol. 51(4), pages 1349-1364, November.
    4. Dimitris Bertsimas & Arthur Delarue & William Eger & John Hanlon & Sebastien Martin, 2020. "Bus Routing Optimization Helps Boston Public Schools Design Better Policies," Interfaces, INFORMS, vol. 50(1), pages 37-49, January.
    5. Park, Junhyuk & Kim, Byung-In, 2010. "The school bus routing problem: A review," European Journal of Operational Research, Elsevier, vol. 202(2), pages 311-319, April.
    6. Liwei Zeng & Sunil Chopra & Karen Smilowitz, 2019. "The Covering Path Problem on a Grid," Transportation Science, INFORMS, vol. 53(6), pages 1656-1672, November.
    7. Kim, Byung-In & Kim, Seongbae & Park, Junhyuk, 2012. "A school bus scheduling problem," European Journal of Operational Research, Elsevier, vol. 218(2), pages 577-585.
    8. Shichao Sun & Zhengyu Duan & Qi Xu, 2018. "School bus routing problem in the stochastic and time-dependent transportation network," PLOS ONE, Public Library of Science, vol. 13(8), pages 1-17, August.
    9. Schittekat, Patrick & Kinable, Joris & Sörensen, Kenneth & Sevaux, Marc & Spieksma, Frits & Springael, Johan, 2013. "A metaheuristic for the school bus routing problem with bus stop selection," European Journal of Operational Research, Elsevier, vol. 229(2), pages 518-528.
    10. Wang, Zhongxiang & Haghani, Ali, 2020. "Column generation-based stochastic school bell time and bus scheduling optimization," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1087-1102.
    11. Ezquerro Eguizábal, Sara & Moura Berodia, José Luis & Ibeas Portilla, Ángel & Benavente Ponce, Juan, 2018. "Optimization model for school transportation design based on economic and social efficiency," Transport Policy, Elsevier, vol. 67(C), pages 93-101.
    12. Fátima M. Souza Lima & Davi S. D. Pereira & Samuel V. Conceição & Ricardo S. Camargo, 2017. "A multi-objective capacitated rural school bus routing problem with heterogeneous fleet and mixed loads," 4OR, Springer, vol. 15(4), pages 359-386, December.
    13. Park, Junhyuk & Tae, Hyunchul & Kim, Byung-In, 2012. "A post-improvement procedure for the mixed load school bus routing problem," European Journal of Operational Research, Elsevier, vol. 217(1), pages 204-213.
    14. Shafahi, Ali & Wang, Zhongxiang & Haghani, Ali, 2018. "SpeedRoute: Fast, efficient solutions for school bus routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 473-493.
    15. Johnes, Jill, 2015. "Operational Research in education," European Journal of Operational Research, Elsevier, vol. 243(3), pages 683-696.
    16. Ansari, Azadeh & Farrokhvar, Leily & Kamali, Behrooz, 2021. "Integrated student to school assignment and school bus routing problem for special needs students," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    17. Caceres, Hernan & Batta, Rajan & He, Qing, 2019. "Special need students school bus routing: Consideration for mixed load and heterogeneous fleet," Socio-Economic Planning Sciences, Elsevier, vol. 65(C), pages 10-19.
    18. Xiaopan Chen & Yunfeng Kong & Lanxue Dang & Yane Hou & Xinyue Ye, 2015. "Exact and Metaheuristic Approaches for a Bi-Objective School Bus Scheduling Problem," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-20, July.
    19. Monnerat, Filipe & Dias, Joana & Alves, Maria João, 2019. "Fleet management: A vehicle and driver assignment model," European Journal of Operational Research, Elsevier, vol. 278(1), pages 64-75.
    20. R. S. Nikolaev & D. O. Egorov, 2022. "Modeling Optimization for School Network in Conditions of Rural Depopulation (the Case of the Yelabuga District in the Republic of Tatarstan)," Regional Research of Russia, Springer, vol. 12(3), pages 395-413, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:50:y:2020:i:5:p:298-312. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.