IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v43y2013i4p360-372.html
   My bibliography  Save this article

A Decision-Making Tool for a Regional Network of Clinical Laboratories

Author

Listed:
  • Jose L. Andrade-Pineda

    (School of Engineering, University of Seville, Seville 41092, Spain)

  • Pedro L. Gonzalez-R

    (School of Engineering, University of Seville, Seville 41092, Spain)

  • Jose M. Framinan

    (School of Engineering, University of Seville, Seville 41092, Spain)

Abstract

For healthcare systems that operate in large, geographically dispersed areas, the quality of the services provided requires the effective management of a complex transportation problem. We present a decision support system to help healthcare managers improve the delivery of biological samples collected from patients in hospitals and outpatient clinics to laboratories that perform tests on them. We develop an optimization model for supporting strategic decisions on the transport of samples and the assignment of work in a large healthcare network with geographically dispersed hospitals, clinics, and testing laboratories. We embed our model in a Web-based tool to provide planners with interactive functions, enabling them to explore solutions and interactively access data to facilitate the analysis of what-if scenarios. The tool proved invaluable in helping the Andalusian Healthcare System obtain significant improvements in efficiency, quality of service, and outsourcing costs.

Suggested Citation

  • Jose L. Andrade-Pineda & Pedro L. Gonzalez-R & Jose M. Framinan, 2013. "A Decision-Making Tool for a Regional Network of Clinical Laboratories," Interfaces, INFORMS, vol. 43(4), pages 360-372, August.
  • Handle: RePEc:inm:orinte:v:43:y:2013:i:4:p:360-372
    DOI: 10.1287/inte.2013.0688
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2013.0688
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2013.0688?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Angel Marín & Esteve Codina, 2008. "Network design: taxi planning," Annals of Operations Research, Springer, vol. 157(1), pages 135-151, January.
    2. Cohn, Amy & Davey, Melinda & Schkade, Lisa & Siegel, Amanda & Wong, Caris, 2008. "Network design and flow problems with cross-arc costs," European Journal of Operational Research, Elsevier, vol. 189(3), pages 890-901, September.
    3. Amy Cohn & Sarah Root & Alex Wang & Douglas Mohr, 2007. "Integration of the Load-Matching and Routing Problem with Equipment Balancing for Small Package Carriers," Transportation Science, INFORMS, vol. 41(2), pages 238-252, May.
    4. Yan, Shangyao & Chen, Shin-Chin & Chen, Chia-Hung, 2006. "Air cargo fleet routing and timetable setting with multiple on-time demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(5), pages 409-430, September.
    5. Martin Durbin & Karla Hoffman, 2008. "OR PRACTICE---The Dance of the Thirty-Ton Trucks: Dispatching and Scheduling in a Dynamic Environment," Operations Research, INFORMS, vol. 56(1), pages 3-19, February.
    6. Andreatta, G. & Lulli, G., 2008. "A multi-period TSP with stochastic regular and urgent demands," European Journal of Operational Research, Elsevier, vol. 185(1), pages 122-132, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R, 2017. "On modelling non-linear quantity discounts in a supplier selection problem by mixed linear integer optimization," Annals of Operations Research, Springer, vol. 258(2), pages 301-346, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    2. Shangyao Yan & Chun-Ying Chen & Chuan-Che Wu, 2012. "Solution methods for the taxi pooling problem," Transportation, Springer, vol. 39(3), pages 723-748, May.
    3. Chao, Ching-Cheng & Yu, Po-Cheng, 2013. "Quantitative evaluation model of air cargo competitiveness and comparative analysis of major Asia-Pacific airports," Transport Policy, Elsevier, vol. 30(C), pages 318-326.
    4. Carman K.M. Lee & Shuzhu Zhang & Kam K.H. Ng, 2019. "Design of An Integration Model for Air Cargo Transportation Network Design and Flight Route Selection," Sustainability, MDPI, vol. 11(19), pages 1-12, September.
    5. Yang, Lei & Yin, Suwan & Han, Ke & Haddad, Jack & Hu, Minghua, 2017. "Fundamental diagrams of airport surface traffic: Models and applications," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 29-51.
    6. Theodore Athanasopoulos & Ioannis Minis, 2013. "Efficient techniques for the multi-period vehicle routing problem with time windows within a branch and price framework," Annals of Operations Research, Springer, vol. 206(1), pages 1-22, July.
    7. Guépet, J. & Briant, O. & Gayon, J.P. & Acuna-Agost, R., 2016. "The aircraft ground routing problem: Analysis of industry punctuality indicators in a sustainable perspective," European Journal of Operational Research, Elsevier, vol. 248(3), pages 827-839.
    8. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    9. Jose L. Andrade-Pineda & David Canca & Pedro L. Gonzalez-R, 2017. "On modelling non-linear quantity discounts in a supplier selection problem by mixed linear integer optimization," Annals of Operations Research, Springer, vol. 258(2), pages 301-346, November.
    10. Sarah Root & Amy Cohn, 2008. "A novel modeling approach for express package carrier planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(7), pages 670-683, October.
    11. Rastpour, Amir & Esfahani, M.S., 2010. "Mathematical models for selection of optimal place and size of connections considering the time-value of money," European Journal of Operational Research, Elsevier, vol. 200(3), pages 764-773, February.
    12. Azadian, Farshid & Murat, Alper E. & Chinnam, Ratna Babu, 2012. "Dynamic routing of time-sensitive air cargo using real-time information," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 355-372.
    13. Yan, Shangyao & Lin, Jenn-Rong & Lai, Chun-Wei, 2013. "The planning and real-time adjustment of courier routing and scheduling under stochastic travel times and demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 53(C), pages 34-48.
    14. S. F. Ghannadpour & S. Noori & R. Tavakkoli-Moghaddam, 2014. "A multi-objective vehicle routing and scheduling problem with uncertainty in customers’ request and priority," Journal of Combinatorial Optimization, Springer, vol. 28(2), pages 414-446, August.
    15. Yan Cheng Hsu & Jose L. Walteros & Rajan Batta, 2020. "Solving the petroleum replenishment and routing problem with variable demands and time windows," Annals of Operations Research, Springer, vol. 294(1), pages 9-46, November.
    16. Bassetto, Tatiana & Mason, Francesco, 2011. "Heuristic algorithms for the 2-period balanced Travelling Salesman Problem in Euclidean graphs," European Journal of Operational Research, Elsevier, vol. 208(3), pages 253-262, February.
    17. Le, Tho V. & Ukkusuri, Satish V. & Xue, Jiawei & Van Woensel, Tom, 2021. "Designing pricing and compensation schemes by integrating matching and routing models for crowd-shipping systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    18. Delgado, Felipe & Sirhan, Cristóbal & Katscher, Mathias & Larrain, Homero, 2020. "Recovering from demand disruptions on an air cargo network," Journal of Air Transport Management, Elsevier, vol. 85(C).
    19. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T. & Raoufi, R., 2014. "Multimodal freight transportation planning: A literature review," European Journal of Operational Research, Elsevier, vol. 233(1), pages 1-15.
    20. Vildan Özkır & Mahmud Sami Özgür, 2021. "Two-Phase Heuristic Algorithm for Integrated Airline Fleet Assignment and Routing Problem," Energies, MDPI, vol. 14(11), pages 1-10, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:43:y:2013:i:4:p:360-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.