IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v35y2023i2p335-349.html
   My bibliography  Save this article

Revisiting Semidefinite Programming Approaches to Options Pricing: Complexity and Computational Perspectives

Author

Listed:
  • Didier Henrion

    (Faculty of Electrical Engineering, Czech Technical University, 166 36 Prague 6, Czechia; Laboratory for Analysis and Architecture of Systems, French National Center for Scientific Research, 31400 Toulouse, France)

  • Felix Kirschner

    (Tilburg University, 5037 AB Tilburg, Netherlands)

  • Etienne De Klerk

    (Tilburg University, 5037 AB Tilburg, Netherlands)

  • Milan Korda

    (Faculty of Electrical Engineering, Czech Technical University, 166 36 Prague 6, Czechia; Laboratory for Analysis and Architecture of Systems, French National Center for Scientific Research, 31400 Toulouse, France)

  • Jean-Bernard Lasserre

    (Laboratory for Analysis and Architecture of Systems, French National Center for Scientific Research, 31400 Toulouse, France)

  • Victor Magron

    (Laboratory for Analysis and Architecture of Systems, French National Center for Scientific Research, 31400 Toulouse, France)

Abstract

In this paper, we consider the problem of finding bounds on the prices of options depending on multiple assets without assuming any underlying model on the price dynamics but only the absence of arbitrage opportunities. We formulate this as a generalized moment problem and utilize the well-known moment-sum-of-squares hierarchy of Lasserre to obtain bounds on the range of the possible prices. A complementary approach (also from Lasserre) is employed for comparison. We present several numerical examples to demonstrate the viability of our approach. The framework we consider makes it possible to incorporate different kinds of observable data, such as moment information, as well as observable prices of options on the assets of interest.

Suggested Citation

  • Didier Henrion & Felix Kirschner & Etienne De Klerk & Milan Korda & Jean-Bernard Lasserre & Victor Magron, 2023. "Revisiting Semidefinite Programming Approaches to Options Pricing: Complexity and Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 335-349, March.
  • Handle: RePEc:inm:orijoc:v:35:y:2023:i:2:p:335-349
    DOI: 10.1287/ijoc.2022.1220
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.1220
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.1220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    2. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    3. Harrison, J. Michael & Kreps, David M., 1979. "Martingales and arbitrage in multiperiod securities markets," Journal of Economic Theory, Elsevier, vol. 20(3), pages 381-408, June.
    4. Dimitris Bertsimas & Ioana Popescu, 2002. "On the Relation Between Option and Stock Prices: A Convex Optimization Approach," Operations Research, INFORMS, vol. 50(2), pages 358-374, April.
    5. Lo, Andrew W., 1987. "Semi-parametric upper bounds for option prices and expected payoffs," Journal of Financial Economics, Elsevier, vol. 19(2), pages 373-387, December.
    6. Mark H. A. Davis & David G. Hobson, 2007. "The Range Of Traded Option Prices," Mathematical Finance, Wiley Blackwell, vol. 17(1), pages 1-14, January.
    7. Luis F. Zuluaga & Javier F. Peña, 2005. "A Conic Programming Approach to Generalized Tchebycheff Inequalities," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 369-388, May.
    8. Peter Laurence & Tai-Ho Wang, 2005. "Sharp Upper and Lower Bounds for Basket Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(3), pages 253-282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Flemming Holtorf & Paul I. Barton, 2024. "Tighter Bounds on Transient Moments of Stochastic Chemical Systems," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 104-149, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kirschner, Felix, 2023. "Conic optimization with applications in finance and approximation theory," Other publications TiSEM e9bef4a5-ee46-45be-90d7-9, Tilburg University, School of Economics and Management.
    2. Zuluaga, Luis F. & Peña, Javier & Du, Donglei, 2009. "Third-order extensions of Lo's semiparametric bound for European call options," European Journal of Operational Research, Elsevier, vol. 198(2), pages 557-570, October.
    3. Laurence, Peter & Wang, Tai-Ho, 2009. "Sharp distribution free lower bounds for spread options and the corresponding optimal subreplicating portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 35-47, February.
    4. J. A. Primbs, 2010. "SDP Relaxation of Arbitrage Pricing Bounds Based on Option Prices and Moments," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 137-155, January.
    5. Peter Laurence & Tai-Ho Wang, 2008. "Distribution-free upper bounds for spread options and market-implied antimonotonicity gap," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 717-734.
    6. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    7. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    8. Javier Pena & Juan Vera & Luis Zuluaga, 2010. "Static-arbitrage lower bounds on the prices of basket options via linear programming," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 819-827.
    9. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    10. Carpenter, Jennifer N., 1998. "The exercise and valuation of executive stock options," Journal of Financial Economics, Elsevier, vol. 48(2), pages 127-158, May.
    11. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    12. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    13. Ait-Sahalia, Yacine & Duarte, Jefferson, 2003. "Nonparametric option pricing under shape restrictions," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 9-47.
    14. Zhou, Qi-Yuan & Wu, Chong-Feng & Feng, Yun, 2007. "Decomposing and valuing callable convertible bonds: a new method based on exotic options," MPRA Paper 7421, University Library of Munich, Germany.
    15. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    16. Gibson, Rajna & Lhabitant, Francois-Serge & Talay, Denis, 2010. "Modeling the Term Structure of Interest Rates: A Review of the Literature," Foundations and Trends(R) in Finance, now publishers, vol. 5(1–2), pages 1-156, December.
    17. Chung, Keunsuk & Turnovsky, Stephen J., 2010. "Foreign debt supply in an imperfect international capital market: Theory and evidence," Journal of International Money and Finance, Elsevier, vol. 29(2), pages 201-223, March.
    18. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    19. Constantinides, George M. & Jackwerth, Jens Carsten & Perrakis, Stylianos, 2005. "Option pricing: Real and risk-neutral distributions," CoFE Discussion Papers 05/06, University of Konstanz, Center of Finance and Econometrics (CoFE).
    20. Jondeau, Eric & Rockinger, Michael, 2000. "Reading the smile: the message conveyed by methods which infer risk neutral densities," Journal of International Money and Finance, Elsevier, vol. 19(6), pages 885-915, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:35:y:2023:i:2:p:335-349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.