IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v10y2010i8p819-827.html
   My bibliography  Save this article

Static-arbitrage lower bounds on the prices of basket options via linear programming

Author

Listed:
  • Javier Pena
  • Juan Vera
  • Luis Zuluaga

Abstract

No abstract is available for this item.

Suggested Citation

  • Javier Pena & Juan Vera & Luis Zuluaga, 2010. "Static-arbitrage lower bounds on the prices of basket options via linear programming," Quantitative Finance, Taylor & Francis Journals, vol. 10(8), pages 819-827.
  • Handle: RePEc:taf:quantf:v:10:y:2010:i:8:p:819-827
    DOI: 10.1080/14697680902956703
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680902956703
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680902956703?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David Hobson & Peter Laurence & Tai-Ho Wang, 2005. "Static-arbitrage upper bounds for the prices of basket options," Quantitative Finance, Taylor & Francis Journals, vol. 5(4), pages 329-342.
    2. Alexandre d'Aspremont & Laurent El Ghaoui, 2003. "Static Arbitrage Bounds on Basket Option Prices," Papers math/0302243, arXiv.org, revised Oct 2005.
    3. Hobson, David & Laurence, Peter & Wang, Tai-Ho, 2005. "Static-arbitrage optimal subreplicating strategies for basket options," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 553-572, December.
    4. Margrabe, William, 1978. "The Value of an Option to Exchange One Asset for Another," Journal of Finance, American Finance Association, vol. 33(1), pages 177-186, March.
    5. Lo, Andrew W., 1987. "Semi-parametric upper bounds for option prices and expected payoffs," Journal of Financial Economics, Elsevier, vol. 19(2), pages 373-387, December.
    6. Luis F. Zuluaga & Javier F. Peña, 2005. "A Conic Programming Approach to Generalized Tchebycheff Inequalities," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 369-388, May.
    7. Peter Laurence & Tai-Ho Wang, 2005. "Sharp Upper and Lower Bounds for Basket Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(3), pages 253-282.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Villegas, Andrés M. & Medaglia, Andrés L. & Zuluaga, Luis F., 2012. "Computing bounds on the expected payoff of Alternative Risk Transfer products," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 271-281.
    2. Papapantoleon Antonis & Sarmiento Paulo Yanez, 2021. "Detection of arbitrage opportunities in multi-asset derivatives markets," Dependence Modeling, De Gruyter, vol. 9(1), pages 439-459, January.
    3. M. A. Goberna & M. A. López, 2017. "Recent contributions to linear semi-infinite optimization," 4OR, Springer, vol. 15(3), pages 221-264, September.
    4. M. A. Goberna & M. A. López, 2018. "Recent contributions to linear semi-infinite optimization: an update," Annals of Operations Research, Springer, vol. 271(1), pages 237-278, December.
    5. Luca De Gennaro Aquino & Carole Bernard, 2019. "Bounds on Multi-asset Derivatives via Neural Networks," Papers 1911.05523, arXiv.org, revised Nov 2020.
    6. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    7. Miguel Goberna, 2012. "Comments on: Stability in linear optimization and related topics. A personal tour," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 245-249, July.
    8. Peña, Javier & Vera, Juan C. & Zuluaga, Luis F., 2012. "Computing arbitrage upper bounds on basket options in the presence of bid–ask spreads," European Journal of Operational Research, Elsevier, vol. 222(2), pages 369-376.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leccadito, Arturo & Paletta, Tommaso & Tunaru, Radu, 2016. "Pricing and hedging basket options with exact moment matching," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 59-69.
    2. Tavin, Bertrand, 2015. "Detection of arbitrage in a market with multi-asset derivatives and known risk-neutral marginals," Journal of Banking & Finance, Elsevier, vol. 53(C), pages 158-178.
    3. Zuluaga, Luis F. & Peña, Javier & Du, Donglei, 2009. "Third-order extensions of Lo's semiparametric bound for European call options," European Journal of Operational Research, Elsevier, vol. 198(2), pages 557-570, October.
    4. Kirschner, Felix, 2023. "Conic optimization with applications in finance and approximation theory," Other publications TiSEM e9bef4a5-ee46-45be-90d7-9, Tilburg University, School of Economics and Management.
    5. Peter Laurence & Tai-Ho Wang, 2008. "Distribution-free upper bounds for spread options and market-implied antimonotonicity gap," The European Journal of Finance, Taylor & Francis Journals, vol. 14(8), pages 717-734.
    6. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    7. Mathias Beiglbock & Pierre Henry-Labord`ere & Friedrich Penkner, 2011. "Model-independent Bounds for Option Prices: A Mass Transport Approach," Papers 1106.5929, arXiv.org, revised Feb 2013.
    8. Mathias Beiglböck & Pierre Henry-Labordère & Friedrich Penkner, 2013. "Model-independent bounds for option prices—a mass transport approach," Finance and Stochastics, Springer, vol. 17(3), pages 477-501, July.
    9. Arash Fahim & Yu-Jui Huang, 2016. "Model-independent superhedging under portfolio constraints," Finance and Stochastics, Springer, vol. 20(1), pages 51-81, January.
    10. Didier Henrion & Felix Kirschner & Etienne De Klerk & Milan Korda & Jean-Bernard Lasserre & Victor Magron, 2023. "Revisiting Semidefinite Programming Approaches to Options Pricing: Complexity and Computational Perspectives," INFORMS Journal on Computing, INFORMS, vol. 35(2), pages 335-349, March.
    11. Peña, Javier & Vera, Juan C. & Zuluaga, Luis F., 2012. "Computing arbitrage upper bounds on basket options in the presence of bid–ask spreads," European Journal of Operational Research, Elsevier, vol. 222(2), pages 369-376.
    12. Laurence, Peter & Wang, Tai-Ho, 2009. "Sharp distribution free lower bounds for spread options and the corresponding optimal subreplicating portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 35-47, February.
    13. J. A. Primbs, 2010. "SDP Relaxation of Arbitrage Pricing Bounds Based on Option Prices and Moments," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 137-155, January.
    14. Chaoubi, Ihsan & Cossette, Hélène & Gadoury, Simon-Pierre & Marceau, Etienne, 2020. "On sums of two counter-monotonic risks," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 47-60.
    15. Yukihiro Tsuzuki, 2012. "On the Optimal Super- and Sub-Hedging Strategies," CARF F-Series CARF-F-300, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo, revised Aug 2013.
    16. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    17. Ariel Neufeld & Antonis Papapantoleon & Qikun Xiang, 2020. "Model-free bounds for multi-asset options using option-implied information and their exact computation," Papers 2006.14288, arXiv.org, revised Jan 2022.
    18. Florian Stebegg, 2014. "Model-Independent Pricing of Asian Options via Optimal Martingale Transport," Papers 1412.1429, arXiv.org.
    19. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    20. Arash Fahim & Yu-Jui Huang, 2014. "Model-independent Superhedging under Portfolio Constraints," Papers 1402.2599, arXiv.org, revised Jun 2015.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:10:y:2010:i:8:p:819-827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.