IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v29y2017i3p558-580.html
   My bibliography  Save this article

Collaborative Operating Room Planning and Scheduling

Author

Listed:
  • Vahid Roshanaei

    (Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada)

  • Curtiss Luong

    (Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada)

  • Dionne M. Aleman

    (Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario M5S 3E3, Canada; and Techna Institute at University Health Network, Toronto, Ontario M5G 1P5, Canada)

  • David R. Urbach

    (Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario M5S 3E3, Canada; and Techna Institute at University Health Network, Toronto, Ontario M5G 1P5, Canada)

Abstract

Operating rooms (ORs) play a substantial role in hospital profitability, and their optimal utilization is conducive to containing the cost of surgical service delivery, shortening surgical patient wait times, and increasing patient admissions. We extend the OR planning and scheduling problem from a single independent hospital to a coalition of multiple hospitals in a strategic network, where a pool of patients, surgeons, and ORs are collaboratively planned. To solve the resulting mixed-integer dual resource constrained model, we develop a novel logic-based Benders’ decomposition approach that employs an allocation master problem, sequencing sub-problems for each hospital-day, and novel multistrategy Benders’ feasibility and optimality cuts. We investigate various patient-to-surgeon allocation flexibilities, as well as the impact of surgeon schedule tightness. Using real data obtained from the General Surgery Departments of the University Health Network (UHN) hospitals, consisting of Toronto General Hospital, Toronto Western Hospital, and Princess Margret Cancer Centre in Toronto, Ontario, Canada (who already engage in some collaborative resource sharing), we find that on average, collaborative OR scheduling with traditional patient-to-surgeon allocation flexibility results in 6% cost-savings, while flexible patient-to-surgeon allocation flexibility increases cost-savings to 40%, and surgeon schedule tightness can impact costs by 15%. The collective impact of our collaboration and patient flexibility results in between 45% and 63% savings per surgery. We also use a game theoretic approach to fairly redistribute the payoff acquired from a coalition of hospitals and to empirically show coalitional stability among hospitals.

Suggested Citation

  • Vahid Roshanaei & Curtiss Luong & Dionne M. Aleman & David R. Urbach, 2017. "Collaborative Operating Room Planning and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 29(3), pages 558-580, August.
  • Handle: RePEc:inm:orijoc:v:29:y:2017:i:3:p:558-580
    DOI: 10.1287/ijoc.2017.0745
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/ijoc.2017.0745
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2017.0745?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    2. Mingming Leng & Mahmut Parlar, 2009. "Allocation of Cost Savings in a Three-Level Supply Chain with Demand Information Sharing: A Cooperative-Game Approach," Operations Research, INFORMS, vol. 57(1), pages 200-213, February.
    3. Pablo Santibáñez & Mehmet Begen & Derek Atkins, 2007. "Surgical block scheduling in a system of hospitals: an application to resource and wait list management in a British Columbia health authority," Health Care Management Science, Springer, vol. 10(3), pages 269-282, September.
    4. B. Roland & Chr. Di Martinelly & F. Riane & Y. Pochet, 2010. "Scheduling an operating theatre under human resource constraints," Post-Print hal-00787093, HAL.
    5. Pham, Dinh-Nguyen & Klinkert, Andreas, 2008. "Surgical case scheduling as a generalized job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 185(3), pages 1011-1025, March.
    6. Brian T. Denton & Andrew J. Miller & Hari J. Balasubramanian & Todd R. Huschka, 2010. "Optimal Allocation of Surgery Blocks to Operating Rooms Under Uncertainty," Operations Research, INFORMS, vol. 58(4-part-1), pages 802-816, August.
    7. Mohammad M. Fazel-Zarandi & J. Christopher Beck, 2012. "Using Logic-Based Benders Decomposition to Solve the Capacity- and Distance-Constrained Plant Location Problem," INFORMS Journal on Computing, INFORMS, vol. 24(3), pages 387-398, August.
    8. Mark Agee & Zane Gates, 2013. "Lessons from Game Theory about Healthcare System Price Inflation," Applied Health Economics and Health Policy, Springer, vol. 11(1), pages 45-51, February.
    9. Sakine Batun & Brian T. Denton & Todd R. Huschka & Andrew J. Schaefer, 2011. "Operating Room Pooling and Parallel Surgery Processing Under Uncertainty," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 220-237, May.
    10. Xu, J. & Xu, X. & Xie, S.Q., 2011. "Recent developments in Dual Resource Constrained (DRC) system research," European Journal of Operational Research, Elsevier, vol. 215(2), pages 309-318, December.
    11. Fei, H. & Chu, C. & Meskens, N. & Artiba, A., 2008. "Solving surgical cases assignment problem by a branch-and-price approach," International Journal of Production Economics, Elsevier, vol. 112(1), pages 96-108, March.
    12. Guinet, Alain & Chaabane, Sondes, 2003. "Operating theatre planning," International Journal of Production Economics, Elsevier, vol. 85(1), pages 69-81, July.
    13. Tony T. Tran & Arthur Araujo & J. Christopher Beck, 2016. "Decomposition Methods for the Parallel Machine Scheduling Problem with Setups," INFORMS Journal on Computing, INFORMS, vol. 28(1), pages 83-95, February.
    14. J. N. Hooker, 2007. "Planning and Scheduling by Logic-Based Benders Decomposition," Operations Research, INFORMS, vol. 55(3), pages 588-602, June.
    15. Naderi, Bahman & Ruiz, Rubén, 2014. "A scatter search algorithm for the distributed permutation flowshop scheduling problem," European Journal of Operational Research, Elsevier, vol. 239(2), pages 323-334.
    16. Seyed Hossein Hashemi Doulabi & Louis-Martin Rousseau & Gilles Pesant, 2016. "A Constraint-Programming-Based Branch-and-Price-and-Cut Approach for Operating Room Planning and Scheduling," INFORMS Journal on Computing, INFORMS, vol. 28(3), pages 432-448, August.
    17. Vijayakumar, Bharathwaj & Parikh, Pratik J. & Scott, Rosalyn & Barnes, April & Gallimore, Jennie, 2013. "A dual bin-packing approach to scheduling surgical cases at a publicly-funded hospital," European Journal of Operational Research, Elsevier, vol. 224(3), pages 583-591.
    18. Cardoen, Brecht & Demeulemeester, Erik & Beliën, Jeroen, 2010. "Operating room planning and scheduling: A literature review," European Journal of Operational Research, Elsevier, vol. 201(3), pages 921-932, March.
    19. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    20. Timothy C. Y. Chan & Derya Demirtas & Roy H. Kwon, 2016. "Optimizing the Deployment of Public Access Defibrillators," Management Science, INFORMS, vol. 62(12), pages 3617-3635, December.
    21. Robert Day & Robert Garfinkel & Steven Thompson, 2012. "Integrated Block Sharing: A Win-Win Strategy for Hospitals and Surgeons," Manufacturing & Service Operations Management, INFORMS, vol. 14(4), pages 567-583, October.
    22. Jebali, AIda & Hadj Alouane, Atidel B. & Ladet, Pierre, 2006. "Operating rooms scheduling," International Journal of Production Economics, Elsevier, vol. 99(1-2), pages 52-62, February.
    23. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sean Harris & David Claudio, 2022. "Current Trends in Operating Room Scheduling 2015 to 2020: a Literature Review," SN Operations Research Forum, Springer, vol. 3(1), pages 1-42, March.
    2. Bahman Naderi & Vahid Roshanaei & Mehmet A. Begen & Dionne M. Aleman & David R. Urbach, 2021. "Increased Surgical Capacity without Additional Resources: Generalized Operating Room Planning and Scheduling," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2608-2635, August.
    3. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    4. Omolbanin Mashkani & Andreas T. Ernst & Dhananjay Thiruvady & Hanyu Gu, 2023. "Minimizing patients total clinical condition deterioration in operating theatre departments," Annals of Operations Research, Springer, vol. 328(1), pages 821-857, September.
    5. Roshanaei, Vahid & Naderi, Bahman, 2021. "Solving integrated operating room planning and scheduling: Logic-based Benders decomposition versus Branch-Price-and-Cut," European Journal of Operational Research, Elsevier, vol. 293(1), pages 65-78.
    6. Zhanwen Shi & Erbao Cao, 2020. "Contract farming problems and games under yield uncertainty," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(4), pages 1210-1238, October.
    7. Oğuzhan Ahmet Arık & Erkan Köse & Jeffrey Yi-Lin Forrest, 2019. "Project Staff Scheduling with Theory of Coalition," Group Decision and Negotiation, Springer, vol. 28(4), pages 827-847, August.
    8. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David R., 2020. "Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling," Omega, Elsevier, vol. 93(C).
    9. Habib Zare & Madjid Tavana & Abbas Mardani & Sepideh Masoudian & Mahyar Kamali Saraji, 2019. "A hybrid data envelopment analysis and game theory model for performance measurement in healthcare," Health Care Management Science, Springer, vol. 22(3), pages 475-488, September.
    10. Naderi, Bahman & Begen, Mehmet A. & Zaric, Gregory S. & Roshanaei, Vahid, 2023. "A novel and efficient exact technique for integrated staffing, assignment, routing, and scheduling of home care services under uncertainty," Omega, Elsevier, vol. 116(C).
    11. Jian-Jun Wang & Zongli Dai & Ai-Chih Chang & Jim Junmin Shi, 2022. "Surgical scheduling by Fuzzy model considering inpatient beds shortage under uncertain surgery durations," Annals of Operations Research, Springer, vol. 315(1), pages 463-505, August.
    12. Julian Schiele & Thomas Koperna & Jens O. Brunner, 2021. "Predicting intensive care unit bed occupancy for integrated operating room scheduling via neural networks," Naval Research Logistics (NRL), John Wiley & Sons, vol. 68(1), pages 65-88, February.
    13. Naderi, Bahman & Roshanaei, Vahid, 2020. "Branch-Relax-and-Check: A tractable decomposition method for order acceptance and identical parallel machine scheduling," European Journal of Operational Research, Elsevier, vol. 286(3), pages 811-827.
    14. Hassan Zohali & Bahman Naderi & Vahid Roshanaei, 2022. "Solving the Type-2 Assembly Line Balancing with Setups Using Logic-Based Benders Decomposition," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 315-332, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David, 2017. "Propagating logic-based Benders’ decomposition approaches for distributed operating room scheduling," European Journal of Operational Research, Elsevier, vol. 257(2), pages 439-455.
    2. Roshanaei, Vahid & Luong, Curtiss & Aleman, Dionne M. & Urbach, David R., 2020. "Reformulation, linearization, and decomposition techniques for balanced distributed operating room scheduling," Omega, Elsevier, vol. 93(C).
    3. Roshanaei, Vahid & Booth, Kyle E.C. & Aleman, Dionne M. & Urbach, David R. & Beck, J. Christopher, 2020. "Branch-and-check methods for multi-level operating room planning and scheduling," International Journal of Production Economics, Elsevier, vol. 220(C).
    4. Michael Samudra & Carla Van Riet & Erik Demeulemeester & Brecht Cardoen & Nancy Vansteenkiste & Frank E. Rademakers, 2016. "Scheduling operating rooms: achievements, challenges and pitfalls," Journal of Scheduling, Springer, vol. 19(5), pages 493-525, October.
    5. Roshanaei, Vahid & Naderi, Bahman, 2021. "Solving integrated operating room planning and scheduling: Logic-based Benders decomposition versus Branch-Price-and-Cut," European Journal of Operational Research, Elsevier, vol. 293(1), pages 65-78.
    6. Babak Akbarzadeh & Ghasem Moslehi & Mohammad Reisi-Nafchi & Broos Maenhout, 2020. "A diving heuristic for planning and scheduling surgical cases in the operating room department with nurse re-rostering," Journal of Scheduling, Springer, vol. 23(2), pages 265-288, April.
    7. Shuwan Zhu & Wenjuan Fan & Shanlin Yang & Jun Pei & Panos M. Pardalos, 2019. "Operating room planning and surgical case scheduling: a review of literature," Journal of Combinatorial Optimization, Springer, vol. 37(3), pages 757-805, April.
    8. Gartner, Daniel & Kolisch, Rainer, 2014. "Scheduling the hospital-wide flow of elective patients," European Journal of Operational Research, Elsevier, vol. 233(3), pages 689-699.
    9. Silva, Thiago A.O. & de Souza, Mauricio C. & Saldanha, Rodney R. & Burke, Edmund K., 2015. "Surgical scheduling with simultaneous employment of specialised human resources," European Journal of Operational Research, Elsevier, vol. 245(3), pages 719-730.
    10. Akbarzadeh, Babak & Moslehi, Ghasem & Reisi-Nafchi, Mohammad & Maenhout, Broos, 2019. "The re-planning and scheduling of surgical cases in the operating room department after block release time with resource rescheduling," European Journal of Operational Research, Elsevier, vol. 278(2), pages 596-614.
    11. Zhang, Jian & Dridi, Mahjoub & El Moudni, Abdellah, 2020. "Column-generation-based heuristic approaches to stochastic surgery scheduling with downstream capacity constraints," International Journal of Production Economics, Elsevier, vol. 229(C).
    12. Yang-Kuei Lin & Yin-Yi Chou, 2020. "A hybrid genetic algorithm for operating room scheduling," Health Care Management Science, Springer, vol. 23(2), pages 249-263, June.
    13. Bahman Naderi & Vahid Roshanaei & Mehmet A. Begen & Dionne M. Aleman & David R. Urbach, 2021. "Increased Surgical Capacity without Additional Resources: Generalized Operating Room Planning and Scheduling," Production and Operations Management, Production and Operations Management Society, vol. 30(8), pages 2608-2635, August.
    14. Zhang, Yu & Wang, Yu & Tang, Jiafu & Lim, Andrew, 2020. "Mitigating overtime risk in tactical surgical scheduling," Omega, Elsevier, vol. 93(C).
    15. Riise, Atle & Mannino, Carlo & Lamorgese, Leonardo, 2016. "Recursive logic-based Benders’ decomposition for multi-mode outpatient scheduling," European Journal of Operational Research, Elsevier, vol. 255(3), pages 719-728.
    16. Marques, Inês & Captivo, M. Eugénia, 2017. "Different stakeholders’ perspectives for a surgical case assignment problem: Deterministic and robust approaches," European Journal of Operational Research, Elsevier, vol. 261(1), pages 260-278.
    17. Hossein Hashemi Doulabi & Soheyl Khalilpourazari, 2023. "Stochastic weekly operating room planning with an exponential number of scenarios," Annals of Operations Research, Springer, vol. 328(1), pages 643-664, September.
    18. Francesca Guerriero & Rosita Guido, 2011. "Operational research in the management of the operating theatre: a survey," Health Care Management Science, Springer, vol. 14(1), pages 89-114, March.
    19. Karsten Schwarz & Michael Römer & Taïeb Mellouli, 2019. "A data-driven hierarchical MILP approach for scheduling clinical pathways: a real-world case study from a German university hospital," Business Research, Springer;German Academic Association for Business Research, vol. 12(2), pages 597-636, December.
    20. Aisha Tayyab & Saif Ullah & Mohammed Fazle Baki, 2023. "An Outer Approximation Method for Scheduling Elective Surgeries with Sequence Dependent Setup Times to Multiple Operating Rooms," Mathematics, MDPI, vol. 11(11), pages 1-15, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:29:y:2017:i:3:p:558-580. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.