IDEAS home Printed from https://ideas.repec.org/a/ibn/ijbmjn/v15y2021i10p94.html
   My bibliography  Save this article

Big Data and Technology Evolution in the IoT Industry

Author

Listed:
  • Elona Marku
  • Maryia Zaitsava
  • Manuel Castriotta
  • Maria Chiara Di Guardo
  • Michela Loi

Abstract

The present study aims to better understand how and to what extent the different dimensions of Big Data can offer insights on technology evolution. By using a patent analytics perspective, in this paper, we introduce a novel approach based on co-words analysis using the abstracts of 170,279 European patents in the Internet of Things (IoT) field published from 2011 to 2019. In so doing, we map and visualize an industry’s technology structure, development, and trends, as well as disentangle the IoT technology conceptual structure, highlighting its core and boundary concepts. This is the first study that applies a decomposition framework to clarify the determinants of IoT inventions, showing relevant changes in the focus of IoT technology overtime. By shedding light on the evolutionary dynamics of the field, this research offers a valuable contribution to the technology innovation literature.

Suggested Citation

  • Elona Marku & Maryia Zaitsava & Manuel Castriotta & Maria Chiara Di Guardo & Michela Loi, 2021. "Big Data and Technology Evolution in the IoT Industry," International Journal of Business and Management, Canadian Center of Science and Education, vol. 15(10), pages 1-94, July.
  • Handle: RePEc:ibn:ijbmjn:v:15:y:2021:i:10:p:94
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/ijbm/article/download/0/0/43791/46018
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/ijbm/article/view/0/43791
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    2. Gambardella, Alfonso, 2013. "The economic value of patented inventions: Thoughts and some open questions," International Journal of Industrial Organization, Elsevier, vol. 31(5), pages 626-633.
    3. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    4. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    5. Manuel Castriotta & Maria Chiara Guardo, 2016. "Disentangling the automotive technology structure: a patent co-citation analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 107(2), pages 819-837, May.
    6. Erevelles, Sunil & Fukawa, Nobuyuki & Swayne, Linda, 2016. "Big Data consumer analytics and the transformation of marketing," Journal of Business Research, Elsevier, vol. 69(2), pages 897-904.
    7. Engelsman, E. C. & van Raan, A. F. J., 1994. "A patent-based cartography of technology," Research Policy, Elsevier, vol. 23(1), pages 1-26, January.
    8. Giada Di Stefano & Alfonso Gambardella & Gianmario Verona, 2012. "Technology Push and Demand Pull Perspectives in Innovation Studies: Current Findings and Future Research Directions," Post-Print hal-00696607, HAL.
    9. Guellec, Dominique & van Pottelsberghe de la Potterie, Bruno, 2007. "The Economics of the European Patent System: IP Policy for Innovation and Competition," OUP Catalogue, Oxford University Press, number 9780199216987.
    10. Cobo, M.J. & López-Herrera, A.G. & Herrera-Viedma, E. & Herrera, F., 2011. "An approach for detecting, quantifying, and visualizing the evolution of a research field: A practical application to the Fuzzy Sets Theory field," Journal of Informetrics, Elsevier, vol. 5(1), pages 146-166.
    11. Di Stefano, Giada & Gambardella, Alfonso & Verona, Gianmario, 2012. "Technology push and demand pull perspectives in innovation studies: Current findings and future research directions," Research Policy, Elsevier, vol. 41(8), pages 1283-1295.
    12. Jian Jin & Ying Liu & Ping Ji & Hongguang Liu, 2016. "Understanding big consumer opinion data for market-driven product design," International Journal of Production Research, Taylor & Francis Journals, vol. 54(10), pages 3019-3041, May.
    13. Carlos Benavides-Velasco & Cristina Quintana-García & Vanesa Guzmán-Parra, 2013. "Trends in family business research," Small Business Economics, Springer, vol. 40(1), pages 41-57, January.
    14. Gautam Ahuja & Riitta Katila, 2001. "Technological acquisitions and the innovation performance of acquiring firms: a longitudinal study," Strategic Management Journal, Wiley Blackwell, vol. 22(3), pages 197-220, March.
    15. Constantiou, Ioanna D & Kallinikos, Jannis, 2015. "New games, new rules: big data and the changing context of strategy," LSE Research Online Documents on Economics 63017, London School of Economics and Political Science, LSE Library.
    16. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manuel Castriotta & Michela Loi & Elona Marku & Luca Naitana, 2019. "What’s in a name? Exploring the conceptual structure of emerging organizations," Scientometrics, Springer;Akadémiai Kiadó, vol. 118(2), pages 407-437, February.
    2. Manuel Castriotta & Michela Loi & Elona Marku & Ludovica Moi, 2021. "Disentangling the corporate entrepreneurship construct: conceptualizing through co-words," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(4), pages 2821-2863, April.
    3. Kerstin Hotte, 2021. "Demand-pull, technology-push, and the direction of technological change," Papers 2104.04813, arXiv.org, revised Jan 2023.
    4. Yan, Hong-Bin & Li, Ming, 2022. "Consumer demand based recombinant search for idea generation," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    5. Wadhwa, Anu & Phelps, Corey & Kotha, Suresh, 2016. "Corporate venture capital portfolios and firm innovation," Journal of Business Venturing, Elsevier, vol. 31(1), pages 95-112.
    6. Qiao, Lu & Dong, Weijia & Lv, Xin, 2023. "The heterogeneous impacts of M&As on renewable energy firms’ innovation: Comparative analysis of China, the US and EU," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 306-323.
    7. Ciliberti, Stefano & Carraresi, Laura & Broering, Stefanie, 2016. "External Knowledge Sources as Drivers for Cross-Industry Innovation in the Italian Food Sector: Does Company Size Matter?," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(3), pages 1-22, August.
    8. Zhenfu Li & Yixuan Wang & Zhao Deng, 2022. "Research on Evolution Characteristics and Factors of Nordic Green Patent Citation Network," Sustainability, MDPI, vol. 14(13), pages 1-21, June.
    9. Thakur-Wernz, Pooja & Cantwell, John & Samant, Shantala, 2019. "Impact of international entry choices on the nature and type of innovation: Evidence from emerging economy firms from the Indian bio-pharmaceutical industry," International Business Review, Elsevier, vol. 28(6), pages 1-1.
    10. Konstantinos Grigoriou & Frank T. Rothaermel, 2017. "Organizing for knowledge generation: internal knowledge networks and the contingent effect of external knowledge sourcing," Strategic Management Journal, Wiley Blackwell, vol. 38(2), pages 395-414, February.
    11. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    12. Kwon, Seokbeom, 2021. "The prevalence of weak patents in the United States: A new method to identify weak patents and the implications for patent policy," Technology in Society, Elsevier, vol. 64(C).
    13. Hain, Daniel S. & Jurowetzki, Roman & Buchmann, Tobias & Wolf, Patrick, 2022. "A text-embedding-based approach to measuring patent-to-patent technological similarity," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    14. Mu-Hsuan Huang & Hui-Yun Sung & Chun-Chieh Wang & Dar-Zen Chen, 2013. "Exploring patent performance and technology interactions of universities, industries, governments and individuals," Scientometrics, Springer;Akadémiai Kiadó, vol. 96(1), pages 11-26, July.
    15. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    16. Kalcheva, Ivalina & McLemore, Ping & Pant, Shagun, 2018. "Innovation: The interplay between demand-side shock and supply-side environment," Research Policy, Elsevier, vol. 47(2), pages 440-461.
    17. Desyllas, Panos & Hughes, Alan, 2010. "Do high technology acquirers become more innovative?," Research Policy, Elsevier, vol. 39(8), pages 1105-1121, October.
    18. Wen, Jun & Wang, Siqin & Yang, Xiuyun & Zhou, Xiaozhou, 2023. "Impacts of epidemics on innovation: An empirical analysis," Technovation, Elsevier, vol. 119(C).
    19. Guan-Can Yang & Gang Li & Chun-Ya Li & Yun-Hua Zhao & Jing Zhang & Tong Liu & Dar-Zen Chen & Mu-Hsuan Huang, 2015. "Using the comprehensive patent citation network (CPC) to evaluate patent value," Scientometrics, Springer;Akadémiai Kiadó, vol. 105(3), pages 1319-1346, December.
    20. Christoph P. Kiefer & Pablo Del Río González & Javier Carrillo‐Hermosilla, 2019. "Drivers and barriers of eco‐innovation types for sustainable transitions: A quantitative perspective," Business Strategy and the Environment, Wiley Blackwell, vol. 28(1), pages 155-172, January.

    More about this item

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:ijbmjn:v:15:y:2021:i:10:p:94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.