IDEAS home Printed from https://ideas.repec.org/a/gam/jwaste/v1y2023i2p32-548d1163959.html
   My bibliography  Save this article

Promoting Sustainable Fruit and Vegetable Biowaste Management and Industrial Symbiosis through an Innovative Web Platform

Author

Listed:
  • Ioannis Varvaringos

    (DRAXIS ENVIRONMENTAL SA, 317 Mesogeion Avenue & Lokridos, Halandri, 15231 Athens, Greece)

  • Eva Skourtanioti

    (DRAXIS ENVIRONMENTAL SA, 317 Mesogeion Avenue & Lokridos, Halandri, 15231 Athens, Greece)

  • Georgios Letsos

    (DRAXIS ENVIRONMENTAL SA, 317 Mesogeion Avenue & Lokridos, Halandri, 15231 Athens, Greece)

  • Evgenia Rizoudi

    (DRAXIS ENVIRONMENTAL SA, 317 Mesogeion Avenue & Lokridos, Halandri, 15231 Athens, Greece)

  • Ektoras Makras

    (DRAXIS ENVIRONMENTAL SA, 317 Mesogeion Avenue & Lokridos, Halandri, 15231 Athens, Greece)

  • Margarita Panagiotopoulou

    (Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechneiou, 15780 Athens, Greece)

  • Sofia Papadaki

    (Laboratory of Process Analysis and Design, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 9 Iroon Polytechneiou, 15780 Athens, Greece)

  • Katerina Valta

    (DRAXIS ENVIRONMENTAL SA, 317 Mesogeion Avenue & Lokridos, Halandri, 15231 Athens, Greece)

Abstract

Sustainable bioeconomy is a promising pathway towards the transition to a circular and climate-neutral economy. The valorization of biowaste is a key player in this direction. This paper presents the design and development of the AgriPLaCE Platform, which aims to promote synergies that enable the utilization of biowaste from the fruit and vegetable supply chain. The platform consists of the AgriPLaCE Waste Management Database, which provides users with an extended list of potential utilization methods for various types of fruit and vegetable biowaste streams, and the AgriPLaCE Synergies Tool, which facilitates synergies between different actors involved in the biowaste-to-resource value chain from agricultural waste production to waste treatment and new valuable products’ exploitation. Initially, the conceptual design of both tools took place based on analysis of user needs and services alongside the system architecture. Following this, the AgriPLaCE Platform was developed with the implementation of all the necessary subsystems. The results of the platform’s implementation demonstrated its potential to generate multiple collaborations and synergies while users can also deepen their knowledge about alternative and emerging treatment technologies and valuable products from a wide range of fruit and vegetable biowaste streams.

Suggested Citation

  • Ioannis Varvaringos & Eva Skourtanioti & Georgios Letsos & Evgenia Rizoudi & Ektoras Makras & Margarita Panagiotopoulou & Sofia Papadaki & Katerina Valta, 2023. "Promoting Sustainable Fruit and Vegetable Biowaste Management and Industrial Symbiosis through an Innovative Web Platform," Waste, MDPI, vol. 1(2), pages 1-17, June.
  • Handle: RePEc:gam:jwaste:v:1:y:2023:i:2:p:32-548:d:1163959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2813-0391/1/2/32/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2813-0391/1/2/32/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Radoslav S. Dimitrov, 2016. "The Paris Agreement on Climate Change: Behind Closed Doors," Global Environmental Politics, MIT Press, vol. 16(3), pages 1-11, August.
    2. Markou, Giorgos & Georgakakis, Dimitris, 2011. "Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review," Applied Energy, Elsevier, vol. 88(10), pages 3389-3401.
    3. Paraskevopoulou, Christina & Vlachos, Dimitrios & Bechtsis, Dimitrios & Tsolakis, Naoum, 2022. "An assessment of circular economy interventions in the peach canning industry," International Journal of Production Economics, Elsevier, vol. 249(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    2. Selvaratnam, T. & Henkanatte-Gedera, S.M. & Muppaneni, T. & Nirmalakhandan, N. & Deng, S. & Lammers, P.J., 2016. "Maximizing recovery of energy and nutrients from urban wastewaters," Energy, Elsevier, vol. 104(C), pages 16-23.
    3. Mario A. Fernandez & Adam J. Daigneault, 2018. "Money Does Grow On Trees: Impacts Of The Paris Agreement On The New Zealand Economy," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 9(03), pages 1-23, August.
    4. Zhu, Sipeng & Ma, Zetai & Zhang, Kun & Deng, Kangyao, 2020. "Energy and exergy analysis of the combined cycle power plant recovering waste heat from the marine two-stroke engine under design and off-design conditions," Energy, Elsevier, vol. 210(C).
    5. Zhu, Sipeng & Gu, Yuncheng & Yuan, Hao & Ma, Zetai & Deng, Kangyao, 2020. "Thermodynamic analysis of the turbocharged marine two-stroke engine cycle with different scavenging air control technologies," Energy, Elsevier, vol. 191(C).
    6. Sueyoshi, Toshiyuki & Mo, Fei & Wang, Derek D., 2022. "Sustainable development of countries all over the world and the impact of renewable energy," Renewable Energy, Elsevier, vol. 184(C), pages 320-331.
    7. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    8. Sigit Perdana and Rod Tyers, 2020. "Global Climate Change Mitigation: Strategic Incentives," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 183-206.
    9. Edina Molnár & Asif Mahmood & Naveed Ahmad & Amir Ikram & Shah Ali Murtaza, 2021. "The Interplay between Corporate Social Responsibility at Employee Level, Ethical Leadership, Quality of Work Life and Employee Pro-Environmental Behavior: The Case of Healthcare Organizations," IJERPH, MDPI, vol. 18(9), pages 1-16, April.
    10. Stefania Betancur & Naghelli Ortega-Avila & Erick César López-Vidaña, 2023. "Strengths, Weaknesses, Opportunities, and Threats Analysis for the Strengthening of Solar Thermal Energy in Colombia," Resources, MDPI, vol. 13(1), pages 1-21, December.
    11. Larissa Souza Passos & Éryka Costa Almeida & Claudio Martin Pereira de Pereira & Alessandro Alberto Casazza & Attilio Converti & Ernani Pinto, 2021. "Chemical Characterization of Microcystis aeruginosa for Feed and Energy Uses," Energies, MDPI, vol. 14(11), pages 1-12, May.
    12. Ferreira, L.S. & Rodrigues, M.S. & Converti, A. & Sato, S. & Carvalho, J.C.M., 2012. "Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor: Use of no-cost CO2 from ethanol fermentation," Applied Energy, Elsevier, vol. 92(C), pages 379-385.
    13. Paul G. Harris, 2017. "China’s Paris pledge on climate change: inadequate and irresponsible," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(1), pages 102-107, March.
    14. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    15. Jacob, Amita & Xia, Ao & Murphy, Jerry D., 2015. "A perspective on gaseous biofuel production from micro-algae generated from CO2 from a coal-fired power plant," Applied Energy, Elsevier, vol. 148(C), pages 396-402.
    16. Nisbett, Nicole & Spaiser, Viktoria, 2022. "The Moral Power of Youth Climate Activists - Transforming International Climate Politics?," SocArXiv 5zsra, Center for Open Science.
    17. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    18. Chen, Wan-Ting & Zhang, Yuanhui & Zhang, Jixiang & Schideman, Lance & Yu, Guo & Zhang, Peng & Minarick, Mitchell, 2014. "Co-liquefaction of swine manure and mixed-culture algal biomass from a wastewater treatment system to produce bio-crude oil," Applied Energy, Elsevier, vol. 128(C), pages 209-216.
    19. Jørgen Wettestad & Lars H. Gulbrandsen, 2022. "On the Process of Including Shipping in EU Emissions Trading: Multi-Level Reinforcement Revisited," Politics and Governance, Cogitatio Press, vol. 10(1), pages 246-255.
    20. Guri Bang & Jon Hovi & Tora Skodvin, 2016. "The Paris Agreement: Short-Term and Long-Term Effectiveness," Politics and Governance, Cogitatio Press, vol. 4(3), pages 209-218.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jwaste:v:1:y:2023:i:2:p:32-548:d:1163959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.