IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i9p1623-d111867.html
   My bibliography  Save this article

Comparison and Screening of Nuclear Fuel Cycle Options in View of Sustainable Performance and Waste Management

Author

Listed:
  • Aleksandra Schwenk-Ferrero

    (Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany)

  • Andrei Andrianov

    (National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Kashirskoe Shosse 31, 115409 Moscow, Russia)

Abstract

Is it true that a nuclear technology approach to generate electric energy offers a clean, safe, reliable and affordable, i.e., sustainable option? In principle yes, however a technology impact on the environment strongly depends on the actual implementation bearing residual risks due to technical failures, human factors, or natural catastrophes. A full response is thus difficult and can be given first when the wicked multi-disciplinary issues get well formulated and “resolved”. These problems are lying at the interface between: the necessary R&D effort, the industrial deployment and the technology impact in view of the environmental sustainability including the management of produced hazardous waste. As such, this problem is clearly of multi-dimensional nature. This enormous complexity indicates that just a description of the problem might cause a dilemma. The paper proposes a novel holistic approach applying Multi-Criteria Decision Analysis to assess the potential of nuclear energy systems with respect to a sustainable performance. It shows how to establish a multi-level criteria structure tree and examines the trading-off techniques for scoring and ranking of options. The presented framework allows multi-criteria and multi-group treatment. The methodology can be applied to support any pre-decisional process launched in a country to find the best nuclear and/or non-nuclear option according to national preferences and priorities. The approach addresses major aspects of the environmental footprint of nuclear energy systems. As a case study, advanced nuclear fuel cycles are analyzed, which were previously investigated by the Nuclear Energy Agency (NEA/OECD) expert group WASTEMAN. Sustainability facets of waste management, resource utilization and economics are in focus.

Suggested Citation

  • Aleksandra Schwenk-Ferrero & Andrei Andrianov, 2017. "Comparison and Screening of Nuclear Fuel Cycle Options in View of Sustainable Performance and Waste Management," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1623-:d:111867
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/9/1623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/9/1623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. International Atomic Energy Agency IAEA, 2009. "Policies and Strategies for Radioactive Waste Management," Working Papers id:2151, eSocialSciences.
    2. Lahdelma, Risto & Hokkanen, Joonas & Salminen, Pekka, 1998. "SMAA - Stochastic multiobjective acceptability analysis," European Journal of Operational Research, Elsevier, vol. 106(1), pages 137-143, April.
    3. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    4. Poinssot, Ch. & Bourg, S. & Ouvrier, N. & Combernoux, N. & Rostaing, C. & Vargas-Gonzalez, M. & Bruno, J., 2014. "Assessment of the environmental footprint of nuclear energy systems. Comparison between closed and open fuel cycles," Energy, Elsevier, vol. 69(C), pages 199-211.
    5. Vladimir Kuznetsov & Galina Fesenko & Aleksandra Schwenk-Ferrero & Andrei Andrianov & Ilya Kuptsov, 2015. "Innovative Nuclear Energy Systems: State-of-the Art Survey on Evaluation and Aggregation Judgment Measures Applied to Performance Comparison," Energies, MDPI, vol. 8(5), pages 1-41, April.
    6. Risto Lahdelma & Pekka Salminen, 2001. "SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making," Operations Research, INFORMS, vol. 49(3), pages 444-454, June.
    7. Denis Bouyssou & Thierry Marchant & Marc Pirlot & Alexis Tsoukiàs & Philippe Vincke, 2006. "Evaluation and Decision Models with Multiple Criteria," International Series in Operations Research and Management Science, Springer, number 978-0-387-31099-2, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. François Diaz-Maurin & Rodney C. Ewing, 2018. "Mission Impossible? Socio-Technical Integration of Nuclear Waste Geological Disposal Systems," Sustainability, MDPI, vol. 10(12), pages 1-39, November.
    2. Ruxing Gao & Hyo On Nam & Won Il Ko & Hong Jang, 2017. "National Options for a Sustainable Nuclear Energy System: MCDM Evaluation Using an Improved Integrated Weighting Approach," Energies, MDPI, vol. 10(12), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Yanping & Liang, Xia & Liang, Haiming & Yang, Ningman, 2018. "Multiple criteria decision making with interval stochastic variables: A method based on interval stochastic dominance," European Journal of Operational Research, Elsevier, vol. 271(2), pages 632-643.
    2. Corrente, Salvatore & Figueira, José Rui & Greco, Salvatore, 2014. "The SMAA-PROMETHEE method," European Journal of Operational Research, Elsevier, vol. 239(2), pages 514-522.
    3. Kadziński, MiŁosz & Greco, Salvatore & SŁowiński, Roman, 2012. "Extreme ranking analysis in robust ordinal regression," Omega, Elsevier, vol. 40(4), pages 488-501.
    4. Dias, Luis C. & Climaco, Joao N., 2005. "Dealing with imprecise information in group multicriteria decisions: a methodology and a GDSS architecture," European Journal of Operational Research, Elsevier, vol. 160(2), pages 291-307, January.
    5. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2018. "σ-µ efficiency analysis: A new methodology for evaluating units through composite indices," MPRA Paper 83569, University Library of Munich, Germany.
    6. García Cáceres, Rafael Guillermo & Aráoz Durand, Julián Arturo & Gómez, Fernando Palacios, 2009. "Integral analysis method - IAM," European Journal of Operational Research, Elsevier, vol. 192(3), pages 891-903, February.
    7. Lahdelma, Risto & Miettinen, Kaisa & Salminen, Pekka, 2005. "Reference point approach for multiple decision makers," European Journal of Operational Research, Elsevier, vol. 164(3), pages 785-791, August.
    8. Zhu, Bin & Xu, Zeshui, 2014. "Stochastic preference analysis in numerical preference relations," European Journal of Operational Research, Elsevier, vol. 237(2), pages 628-633.
    9. Valentin Bertsch & Wolf Fichtner, 2016. "A participatory multi-criteria approach for power generation and transmission planning," Annals of Operations Research, Springer, vol. 245(1), pages 177-207, October.
    10. Luis C. Dias & Carolina Passeira & João Malça & Fausto Freire, 2022. "Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains," Annals of Operations Research, Springer, vol. 312(2), pages 1359-1374, May.
    11. Kangas, Jyrki & Store, Ron & Kangas, Annika, 2005. "Socioecological landscape planning approach and multicriteria acceptability analysis in multiple-purpose forest management," Forest Policy and Economics, Elsevier, vol. 7(4), pages 603-614, May.
    12. Hernandez-Perdomo, Elvis A. & Mun, Johnathan & Rocco S., Claudio M., 2017. "Active management in state-owned energy companies: Integrating a real options approach into multicriteria analysis to make companies sustainable," Applied Energy, Elsevier, vol. 195(C), pages 487-502.
    13. Wulf, David & Bertsch, Valentin, 2016. "A natural language generation approach to support understanding and traceability of multi-dimensional preferential sensitivity analysis in multi-criteria decision making," MPRA Paper 75025, University Library of Munich, Germany.
    14. Khaled Belahcène & Vincent Mousseau & Wassila Ouerdane & Marc Pirlot & Olivier Sobrie, 2023. "Multiple criteria sorting models and methods—Part I: survey of the literature," 4OR, Springer, vol. 21(1), pages 1-46, March.
    15. Haichao Wang & Wenling Jiao & Risto Lahdelma & Chuanzhi Zhu & Pinghua Zou, 2014. "Stochastic Multicriteria Acceptability Analysis for Evaluation of Combined Heat and Power Units," Energies, MDPI, vol. 8(1), pages 1-20, December.
    16. Raffaele Lagravinese & Paolo Liberati & Giuliano Resce, 2017. "Exploring health outcomes by stochastic multi-objective acceptability analysis: an application to Italian regions," Working Papers. Collection B: Regional and sectoral economics 1703, Universidade de Vigo, GEN - Governance and Economics research Network.
    17. Greco, Salvatore & Ishizaka, Alessio & Tasiou, Menelaos & Torrisi, Gianpiero, 2019. "Sigma-Mu efficiency analysis: A methodology for evaluating units through composite indicators," European Journal of Operational Research, Elsevier, vol. 278(3), pages 942-960.
    18. Fernández, Eduardo & Figueira, José Rui & Navarro, Jorge, 2019. "An interval extension of the outranking approach and its application to multiple-criteria ordinal classification," Omega, Elsevier, vol. 84(C), pages 189-198.
    19. Yang, Feng & Ang, Sheng & Xia, Qiong & Yang, Chenchen, 2012. "Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis," European Journal of Operational Research, Elsevier, vol. 223(2), pages 483-488.
    20. Lahdelma, Risto & Makkonen, Simo & Salminen, Pekka, 2009. "Two ways to handle dependent uncertainties in multi-criteria decision problems," Omega, Elsevier, vol. 37(1), pages 79-92, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:9:p:1623-:d:111867. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.