IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i10p1772-d113827.html
   My bibliography  Save this article

The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize

Author

Listed:
  • Sarah Wettstein

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland)

  • Karen Muir

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland)

  • Deborah Scharfy

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland)

  • Matthias Stucki

    (Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland)

Abstract

Agriculture is under pressure to reduce its environmental impact. The use of renewable energy sources has potential to decrease these impacts. Maize is one of the most significant crops in South Africa and approximately 241,000 hectares are irrigated. This irrigation is most commonly powered by grid electricity generated using coal. However, South Africa has high solar irradiation, which could be used to generate photovoltaic electricity. The aim of this study was to determine the environmental mitigation potential of replacing grid-powered irrigation in South African maize production with photovoltaic irrigation systems using Life Cycle Assessment. The study included the value chain of maize production from cultivation to storage. Replacing grid electricity with photovoltaic-generated electricity leads to a 34% reduction in the global warming potential of maize produced under irrigation, and—applied at a national level—could potentially reduce South Africa’s greenhouse gas emissions by 536,000 t CO 2 -eq. per year. Non-renewable energy demand, freshwater eutrophication, acidification, and particulate matter emissions are also significantly lowered. Replacing grid electricity with renewable energy in irrigation has been shown to be an effective means of reducing the environmental impacts associated with South African maize production.

Suggested Citation

  • Sarah Wettstein & Karen Muir & Deborah Scharfy & Matthias Stucki, 2017. "The Environmental Mitigation Potential of Photovoltaic-Powered Irrigation in the Production of South African Maize," Sustainability, MDPI, vol. 9(10), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1772-:d:113827
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/10/1772/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/10/1772/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Meah, Kala & Fletcher, Steven & Ula, Sadrul, 2008. "Solar photovoltaic water pumping for remote locations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 472-487, February.
    2. Hondo, Hiroki, 2005. "Life cycle GHG emission analysis of power generation systems: Japanese case," Energy, Elsevier, vol. 30(11), pages 2042-2056.
    3. Walwyn, David Richard & Brent, Alan Colin, 2015. "Renewable energy gathers steam in South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 390-401.
    4. Sherwani, A.F. & Usmani, J.A. & Varun, 2010. "Life cycle assessment of solar PV based electricity generation systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 540-544, January.
    5. Pegels, Anna, 2010. "Renewable energy in South Africa: Potentials, barriers and options for support," Energy Policy, Elsevier, vol. 38(9), pages 4945-4954, September.
    6. Tsoutsos, Theocharis & Frantzeskaki, Niki & Gekas, Vassilis, 2005. "Environmental impacts from the solar energy technologies," Energy Policy, Elsevier, vol. 33(3), pages 289-296, February.
    7. Mekhilef, S. & Faramarzi, S.Z. & Saidur, R. & Salam, Zainal, 2013. "The application of solar technologies for sustainable development of agricultural sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 583-594.
    8. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    9. World Bank, 2017. "World Development Indicators 2017," World Bank Publications - Books, The World Bank Group, number 26447, December.
    10. Varun & Bhat, I.K. & Prakash, Ravi, 2009. "LCA of renewable energy for electricity generation systems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1067-1073, June.
    11. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    12. Peng, Jinqing & Lu, Lin & Yang, Hongxing, 2013. "Review on life cycle assessment of energy payback and greenhouse gas emission of solar photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 255-274.
    13. Pande, P.C. & Singh, A.K. & Ansari, S. & Vyas, S.K. & Dave, B.K., 2003. "Design development and testing of a solar PV pump based drip system for orchards," Renewable Energy, Elsevier, vol. 28(3), pages 385-396.
    14. Deborah Scharfy & Norman Boccali & Matthias Stucki, 2017. "Clean Technologies in Agriculture—How to Prioritise Measures?," Sustainability, MDPI, vol. 9(8), pages 1-22, July.
    15. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    16. Meah, Kala & Ula, Sadrul & Barrett, Steven, 2008. "Solar photovoltaic water pumping--opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1162-1175, May.
    17. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2009. "Assessment of sustainability indicators for renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1082-1088, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hiloidhari, Moonmoon & Vijay, Vandit & Banerjee, Rangan & Baruah, D.C. & Rao, Anand B., 2021. "Energy-carbon-water footprint of sugarcane bioenergy: A district-level life cycle assessment in the state of Maharashtra, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Giuseppe Todde & Lelia Murgia & Isaac Carrelo & Rita Hogan & Antonio Pazzona & Luigi Ledda & Luis Narvarte, 2018. "Embodied Energy and Environmental Impact of Large-Power Stand-Alone Photovoltaic Irrigation Systems," Energies, MDPI, vol. 11(8), pages 1-15, August.
    3. Rahman, Syed Mahbubur & Mori, Akihisa & Rahman, Syed Mustafizur, 2022. "How does climate adaptation co-benefits help scale-up solar-powered irrigation? A case of the Barind Tract, Bangladesh," Renewable Energy, Elsevier, vol. 182(C), pages 1039-1048.
    4. Jian Chen & Lingjun Wang & Yuanyuan Li, 2022. "Research on Niche Evaluation of Photovoltaic Agriculture in China," IJERPH, MDPI, vol. 19(22), pages 1-24, November.
    5. Rita H. Almeida & Isaac B. Carrêlo & Eduardo Lorenzo & Luis Narvarte & José Fernández-Ramos & Francisco Martínez-Moreno & Luis M. Carrasco, 2018. "Development and Test of Solutions to Enlarge the Power of PV Irrigation and Application to a 140 kW PV-Diesel Representative Case," Energies, MDPI, vol. 11(12), pages 1-24, December.
    6. Miguel Ángel Pardo Picazo & Juan Manzano Juárez & Diego García-Márquez, 2018. "Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System," Sustainability, MDPI, vol. 10(11), pages 1-17, November.
    7. Jian Chen & Yiping Liu & Lingjun Wang, 2019. "Research on Coupling Coordination Development for Photovoltaic Agriculture System in China," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    8. Deborah Scharfy & Norman Boccali & Matthias Stucki, 2017. "Clean Technologies in Agriculture—How to Prioritise Measures?," Sustainability, MDPI, vol. 9(8), pages 1-22, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    2. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    3. Gopal, C. & Mohanraj, M. & Chandramohan, P. & Chandrasekar, P., 2013. "Renewable energy source water pumping systems—A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 351-370.
    4. Nugent, Daniel & Sovacool, Benjamin K., 2014. "Assessing the lifecycle greenhouse gas emissions from solar PV and wind energy: A critical meta-survey," Energy Policy, Elsevier, vol. 65(C), pages 229-244.
    5. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    6. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    7. Ludin, Norasikin Ahmad & Mustafa, Nur Ifthitah & Hanafiah, Marlia M. & Ibrahim, Mohd Adib & Asri Mat Teridi, Mohd & Sepeai, Suhaila & Zaharim, Azami & Sopian, Kamaruzzaman, 2018. "Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 11-28.
    8. Yihsuan Wu & Jian Hua, 2022. "Investigating a Retrofit Thermal Power Plant from a Sustainable Environment Perspective—A Fuel Lifecycle Assessment Case Study," Sustainability, MDPI, vol. 14(8), pages 1-26, April.
    9. Prehoda, Emily W. & Pearce, Joshua M., 2017. "Potential lives saved by replacing coal with solar photovoltaic electricity production in the U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 710-715.
    10. Sokka, L. & Sinkko, T. & Holma, A. & Manninen, K. & Pasanen, K. & Rantala, M. & Leskinen, P., 2016. "Environmental impacts of the national renewable energy targets – A case study from Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 1599-1610.
    11. Xue-Ting Jiang & Rongrong Li, 2017. "Decoupling and Decomposition Analysis of Carbon Emissions from Electric Output in the United States," Sustainability, MDPI, vol. 9(6), pages 1-13, May.
    12. Song, Cuihong & Gardner, Kevin H. & Klein, Sharon J.W. & Souza, Simone Pereira & Mo, Weiwei, 2018. "Cradle-to-grave greenhouse gas emissions from dams in the United States of America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 945-956.
    13. Sica, Daniela & Malandrino, Ornella & Supino, Stefania & Testa, Mario & Lucchetti, Maria Claudia, 2018. "Management of end-of-life photovoltaic panels as a step towards a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2934-2945.
    14. Aman, M.M. & Solangi, K.H. & Hossain, M.S. & Badarudin, A. & Jasmon, G.B. & Mokhlis, H. & Bakar, A.H.A. & Kazi, S.N, 2015. "A review of Safety, Health and Environmental (SHE) issues of solar energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1190-1204.
    15. Varun, & Prakash, Ravi & Bhat, I.K., 2012. "Life cycle greenhouse gas emissions estimation for small hydropower schemes in India," Energy, Elsevier, vol. 44(1), pages 498-508.
    16. Amor, Mourad Ben & Lesage, Pascal & Pineau, Pierre-Olivier & Samson, Réjean, 2010. "Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2885-2895, December.
    17. Amponsah, Nana Yaw & Troldborg, Mads & Kington, Bethany & Aalders, Inge & Hough, Rupert Lloyd, 2014. "Greenhouse gas emissions from renewable energy sources: A review of lifecycle considerations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 461-475.
    18. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    19. Hassanien, Reda Hassanien Emam & Li, Ming & Dong Lin, Wei, 2016. "Advanced applications of solar energy in agricultural greenhouses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 989-1001.
    20. Battisti, L., 2023. "Energy, power, and greenhouse gas emissions for future transition scenarios," Energy Policy, Elsevier, vol. 179(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:10:p:1772-:d:113827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.