IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v8y2016i11p1092-d81325.html
   My bibliography  Save this article

Management Optimization of the Luminous Flux Regulation of a Lighting System in Road Tunnels. A First Approach to the Exertion of Predictive Control Systems

Author

Listed:
  • Ferdinando Salata

    (DIAEE—Area Fisica Tecnica, Università degli Studi di Roma “Sapienza”, Via Eudossiana, 18-00184 Rome, Italy)

  • Iacopo Golasi

    (DIAEE—Area Fisica Tecnica, Università degli Studi di Roma “Sapienza”, Via Eudossiana, 18-00184 Rome, Italy)

  • Alessandro Poliziani

    (DIAEE—Area Fisica Tecnica, Università degli Studi di Roma “Sapienza”, Via Eudossiana, 18-00184 Rome, Italy)

  • Antonio Futia

    (DIAEE—Area Fisica Tecnica, Università degli Studi di Roma “Sapienza”, Via Eudossiana, 18-00184 Rome, Italy)

  • Emanuele De Lieto Vollaro

    (DIMI—Università degli Studi “Roma TRE”, Via Vito Volterra, 62-00146 Rome, Italy)

  • Massimo Coppi

    (DIAEE—Area Fisica Tecnica, Università degli Studi di Roma “Sapienza”, Via Eudossiana, 18-00184 Rome, Italy)

  • Andrea De Lieto Vollaro

    (DIAEE—Area Fisica Tecnica, Università degli Studi di Roma “Sapienza”, Via Eudossiana, 18-00184 Rome, Italy)

Abstract

Lighting very long road tunnels implies a high consumption of electrical energy since it requires a proper illumination during the whole day. In particular, in the daytime, the illuminance levels right at the tunnel entrance threshold and exit zones must be higher than those characterizing the inside of the tunnel; in this way, the eye of the driver is able to adapt and be safe while passing from a high natural illumination of the outside to the lighting conditions characterizing the inside of the tunnel. However this causes a high energy demand. Therefore, this case study investigates whether it is possible to minimize the energy demand through the exertion of an automatic new control system regulating the luminous fluxes of artificial sources (guaranteeing the parameters set by the regulation) with respect to the variation of the natural light characterizing the outside. The innovative control systems must be characterized by high reliability levels in order to guarantee conditions which are not dangerous to the driver if an outage occurs and minimize their maintenance costs. To carry out this type of study, the software DIALux was used to simulate a tunnel with a dimming system (with lamps characterized by a high luminous efficiency) regulated by a pre-programmed logic control system (with high Mean Time Between Failure (MTBF) values). The savings obtained enabled the amortization of the solution here suggested in a time interval that makes it an advantageous choice economically speaking.

Suggested Citation

  • Ferdinando Salata & Iacopo Golasi & Alessandro Poliziani & Antonio Futia & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Management Optimization of the Luminous Flux Regulation of a Lighting System in Road Tunnels. A First Approach to the Exertion of Predictive Control Systems," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
  • Handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1092-:d:81325
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/8/11/1092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/8/11/1092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferdinando Salata & Iacopo Golasi & Simone Bovenzi & Emanuele De Lieto Vollaro & Francesca Pagliaro & Lucia Cellucci & Massimo Coppi & Franco Gugliermetti & Andrea De Lieto Vollaro, 2015. "Energy Optimization of Road Tunnel Lighting Systems," Sustainability, MDPI, vol. 7(7), pages 1-17, July.
    2. Ferdinando Salata & Iacopo Golasi & Giacomo Falanga & Marco Allegri & Emanuele De Lieto Vollaro & Fabio Nardecchia & Francesca Pagliaro & Franco Gugliermetti & Andrea De Lieto Vollaro, 2015. "Maintenance and Energy Optimization of Lighting Systems for the Improvement of Historic Buildings: A Case Study," Sustainability, MDPI, vol. 7(8), pages 1-19, August.
    3. Ferdinando Salata & Iacopo Golasi & Emiliano Bombelli & Emanuele De Lieto Vollaro & Fabio Nardecchia & Francesca Pagliaro & Franco Gugliermetti & Andrea De Lieto Vollaro, 2015. "Case Study on Economic Return on Investments for Safety and Emergency Lighting in Road Tunnels," Sustainability, MDPI, vol. 7(8), pages 1-14, July.
    4. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    5. Luca Evangelisti & Gabriele Battista & Claudia Guattari & Carmine Basilicata & Roberto De Lieto Vollaro, 2014. "Analysis of Two Models for Evaluating the Energy Performance of Different Buildings," Sustainability, MDPI, vol. 6(8), pages 1-11, August.
    6. Asdrubali, Francesco & Baldinelli, Giorgio & D’Alessandro, Francesco & Scrucca, Flavio, 2015. "Life cycle assessment of electricity production from renewable energies: Review and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1113-1122.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Peña-García & Thi Phuoc Lai Nguyen, 2018. "A Global Perspective for Sustainable Highway Tunnel Lighting Regulations: Greater Road Safety with a Lower Environmental Impact," IJERPH, MDPI, vol. 15(12), pages 1-9, November.
    2. Valentín Molina-Moreno & Juan Carlos Leyva-Díaz & Jorge Sánchez-Molina & Antonio Peña-García, 2017. "Proposal to Foster Sustainability through Circular Economy-Based Engineering: A Profitable Chain from Waste Management to Tunnel Lighting," Sustainability, MDPI, vol. 9(12), pages 1-9, December.
    3. Antonio Peña-García & Ferdinando Salata & Iacopo Golasi, 2019. "Decrease of the Maximum Speed in Highway Tunnels as a Measure to Foster Energy Savings and Sustainability," Energies, MDPI, vol. 12(4), pages 1-11, February.
    4. Li Qin & Li-Li Dong & Wen-Hai Xu & Li-Dong Zhang & Arturo S. Leon, 2017. "An Intelligent Luminance Control Method for Tunnel Lighting Based on Traffic Volume," Sustainability, MDPI, vol. 9(12), pages 1-12, November.
    5. Yuwei Zhang & Peng Xue & Yifan Zhao & Zhikai Ni & Yani Quan & Jingchao Xie & Jiaping Liu, 2023. "A Novel Evaluation Method of Tunnel Access Zone Luminance Based on Measured Meteorological Data," Sustainability, MDPI, vol. 15(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Salata, Ferdinando & Golasi, Iacopo & di Salvatore, Maicol & de Lieto Vollaro, Andrea, 2016. "Energy and reliability optimization of a system that combines daylighting and artificial sources. A case study carried out in academic buildings," Applied Energy, Elsevier, vol. 169(C), pages 250-266.
    2. Antonio Bracale & Pierluigi Caramia & Pietro Varilone & Paola Verde, 2019. "Probabilistic Estimation of the Energy Consumption and Performance of the Lighting Systems of Road Tunnels for Investment Decision Making," Energies, MDPI, vol. 12(8), pages 1-21, April.
    3. Annika K. Jägerbrand, 2016. "LED (Light-Emitting Diode) Road Lighting in Practice: An Evaluation of Compliance with Regulations and Improvements for Further Energy Savings," Energies, MDPI, vol. 9(5), pages 1-15, May.
    4. Salata, Ferdinando & Ciancio, Virgilio & Dell'Olmo, Jacopo & Golasi, Iacopo & Palusci, Olga & Coppi, Massimo, 2020. "Effects of local conditions on the multi-variable and multi-objective energy optimization of residential buildings using genetic algorithms," Applied Energy, Elsevier, vol. 260(C).
    5. Ferdinando Salata & Anna Tarsitano & Iacopo Golasi & Emanuele De Lieto Vollaro & Massimo Coppi & Andrea De Lieto Vollaro, 2016. "Application of Absorption Systems Powered by Solar Ponds in Warm Climates for the Air Conditioning in Residential Buildings," Energies, MDPI, vol. 9(10), pages 1-18, October.
    6. Judit Lopez-Besora & Glòria Serra-Coch & Helena Coch & Antonio Isalgue, 2016. "Daylight Management in Mediterranean Cities: When Shortage Is Not the Issue," Energies, MDPI, vol. 9(9), pages 1-12, September.
    7. Zhang, Ruirui & Wang, Guiling & Shen, Xiaoxu & Wang, Jinfeng & Tan, Xianfeng & Feng, Shoutao & Hong, Jinglan, 2020. "Is geothermal heating environmentally superior than coal fired heating in China?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Han, Zhong & Tian, Liting & Cheng, Lin, 2021. "A deducing-based reliability optimization for electrical equipment with constant failure rate components duration their mission profile," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    9. Niemelä, Tuomo & Kosonen, Risto & Jokisalo, Juha, 2016. "Cost-optimal energy performance renovation measures of educational buildings in cold climate," Applied Energy, Elsevier, vol. 183(C), pages 1005-1020.
    10. Giuseppe Cantisani & Paola Di Mascio & Laura Moretti, 2018. "Comparative Life Cycle Assessment of Lighting Systems and Road Pavements in an Italian Twin-Tube Road Tunnel," Sustainability, MDPI, vol. 10(11), pages 1-18, November.
    11. Zhang, Xiaoyue & Huang, Guohe & Liu, Lirong & Li, Kailong, 2022. "Development of a stochastic multistage lifecycle programming model for electric power system planning – A case study for the Province of Saskatchewan, Canada," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Victor Kouloumpis & Antonios Kalogerakis & Anastasia Pavlidou & George Tsinarakis & George Arampatzis, 2020. "Should Photovoltaics Stay at Home? Comparative Life Cycle Environmental Assessment on Roof-Mounted and Ground-Mounted Photovoltaics," Sustainability, MDPI, vol. 12(21), pages 1-15, November.
    13. Ivana Rakonjac & Ana Zorić & Ivan Rakonjac & Jelena Milošević & Jelena Marić & Danilo Furundžić, 2022. "Increasing the Livability of Open Public Spaces during Nighttime: The Importance of Lighting in Waterfront Areas," Sustainability, MDPI, vol. 14(10), pages 1-25, May.
    14. Kwon, Gihoon & Tsang, Daniel C.W. & Oh, Jeong-Ik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Pyrolysis of aquatic carbohydrates using CO2 as reactive gas medium: A case study of chitin," Energy, Elsevier, vol. 177(C), pages 136-143.
    15. Chen, Qian & Oh, Seung Jin & Burhan, Muhammad, 2020. "Design and optimization of a novel electrowetting-driven solar-indoor lighting system," Applied Energy, Elsevier, vol. 269(C).
    16. Wahyudi Sutopo & Ika Shinta Mardikaningsih & Roni Zakaria & Ahad Ali, 2020. "A Model to Improve the Implementation Standards of Street Lighting Based on Solar Energy: A Case Study," Energies, MDPI, vol. 13(3), pages 1-20, February.
    17. Jianhua Ding & Xinyi Zou & Murong Lv, 2023. "Influence of Opposing Exterior Window Geometry on the Carbon Emissions of Indoor Lighting under the Combined Effect of Natural Lighting and Artificial Lighting in the City of Shenyang, China," Sustainability, MDPI, vol. 15(17), pages 1-20, August.
    18. Emanuele Bonamente & Lara Pelliccia & Maria Cleofe Merico & Sara Rinaldi & Alessandro Petrozzi, 2015. "The Multifunctional Environmental Energy Tower: Carbon Footprint and Land Use Analysis of an Integrated Renewable Energy Plant," Sustainability, MDPI, vol. 7(10), pages 1-21, October.
    19. Sebastian Ernst & Leszek Kotulski & Adam Sędziwy & Igor Wojnicki, 2023. "Graph-Based Computational Methods for Efficient Management and Energy Conservation in Smart Cities," Energies, MDPI, vol. 16(7), pages 1-21, April.
    20. Murillo Vetroni Barros & Cassiano Moro Piekarski & Antonio Carlos De Francisco, 2018. "Carbon Footprint of Electricity Generation in Brazil: An Analysis of the 2016–2026 Period," Energies, MDPI, vol. 11(6), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:8:y:2016:i:11:p:1092-:d:81325. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.