IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v7y2015i4p3571-3591d47364.html
   My bibliography  Save this article

Conceptual Framework for Assessing the Sustainability of Forest Fuel Reduction Treatments and Their Adaptation to Climate Change

Author

Listed:
  • Tony Prato

    (Department of Agricultural and Applied Economics, University of Missouri-Columbia, 355 Wild West Dr., Eureka, MT 59917-4000, USA)

Abstract

Applying f uel reduction treatments (FRTs) to forested landscapes can alleviate undesirable changes in wildfire benefits and costs due to climate change. A conceptual framework was developed for determining the preferred FRTs across planning periods, adapting FRTs to future climate change, assessing the sustainability of adaptive responses to climate change, and evaluating the validity of the two premises motivating this issue of Sustainability . The conceptual framework: (1) accounts for uncertainty about future climate change and its effects on management objectives for FRTs; (2) employs biophysical simulation and mental models to estimate the management objectives for FRTs; (3) uses fuzzy TOPSIS to determine the preferred FRTs for climate futures; (4) employs the minimax regret criterion to identify the preferred FRT for each planning period; (5) determines the best strategy for adapting FRTs to future climate change; and (6) assesses landscape sustainability when using the preferred FRTs. The framework is demonstrated with constructed examples for adapting FRTs to climate change for privately- and publicly-owned forested landscapes. Based on the conceptual framework, current knowledge does not allow determining with certainty whether managers’ adaptations of FRTs to future climate change are sustainable or unsustainable due to type I and II decision errors.

Suggested Citation

  • Tony Prato, 2015. "Conceptual Framework for Assessing the Sustainability of Forest Fuel Reduction Treatments and Their Adaptation to Climate Change," Sustainability, MDPI, vol. 7(4), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:7:y:2015:i:4:p:3571-3591:d:47364
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/7/4/3571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/7/4/3571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Brian Hardaker & James W. Richardson & Gudbrand Lien & Keith D. Schumann, 2004. "Stochastic efficiency analysis with risk aversion bounds: a simplified approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 253-270, June.
    2. A. Westerling & B. Bryant & H. Preisler & T. Holmes & H. Hidalgo & T. Das & S. Shrestha, 2011. "Climate change and growth scenarios for California wildfire," Climatic Change, Springer, vol. 109(1), pages 445-463, December.
    3. Prato, Tony, 2007. "Assessing ecosystem sustainability and management using fuzzy logic," Ecological Economics, Elsevier, vol. 61(1), pages 171-177, February.
    4. Dunn, Elizabeth G. & Keller, James M. & Marks, Leonie A., 1996. "Fuzzy Multiple Attribute Decision Making (MADM): A Tool for Agricultural and Resource Economics," 1996 Annual Meeting, July 28-31, San Antonio, Texas 271481, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    5. Yosef Jabareen, 2014. "An Assessment Framework for Cities Coping with Climate Change: The Case of New York City and its PlaNYC 2030," Sustainability, MDPI, vol. 6(9), pages 1-22, September.
    6. Andriantiatsaholiniaina, Luc A. & Kouikoglou, Vassilis S. & Phillis, Yannis A., 2004. "Evaluating strategies for sustainable development: fuzzy logic reasoning and sensitivity analysis," Ecological Economics, Elsevier, vol. 48(2), pages 149-172, February.
    7. Prato, Tony, 2012. "Increasing resilience of natural protected areas to future climate change: A fuzzy adaptive management approach," Ecological Modelling, Elsevier, vol. 242(C), pages 46-53.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edgar Lorenzo-Sáez & Jose-Vicente Oliver-Villanueva & Victoria Lerma-Arce & Celia Yagüe-Hurtado & Lenin Guillermo Lemus-Zúñiga, 2021. "Potential Analysis of Mediterranean Forestry for Offsetting GHG Emissions at Regional Level: Evidence from Valencia, Spain," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    2. Huiru Zhao & Nana Li, 2016. "Performance Evaluation for Sustainability of Strong Smart Grid by Using Stochastic AHP and Fuzzy TOPSIS Methods," Sustainability, MDPI, vol. 8(2), pages 1-22, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beynon, Malcolm J. & Munday, Max, 2008. "Considering the effects of imprecision and uncertainty in ecological footprint estimation: An approach in a fuzzy environment," Ecological Economics, Elsevier, vol. 67(3), pages 373-383, October.
    2. Prato, Tony, 2008. "Stochastic multiple attribute evaluation of land use policies," Ecological Modelling, Elsevier, vol. 219(1), pages 115-124.
    3. Lyman, Nathaniel & Nalley, Lawton Lanier, 2013. "Stochastic Valuation of Hybrid Rice Technology in Arkansas," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 142505, Southern Agricultural Economics Association.
    4. Frikkie Maré & Bennie Grové & Johan Willemse, 2017. "Evaluating the long-term effectiveness of crop insurance products to provide cost effective and constant cover for maize producers under stochastic yields and prices," Agrekon, Taylor & Francis Journals, vol. 56(3), pages 233-247, July.
    5. Hristovska, Tatjana & Watkins, K. Bradley & Anders, Merle M., 2012. "An Economic Risk Analysis of No-till Management for the Rice-Soybean Rotation System used in Arkansas," 2012 Annual Meeting, February 4-7, 2012, Birmingham, Alabama 119676, Southern Agricultural Economics Association.
    6. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    7. Asci, Serhat & VanSickle, John J. & Cantliffe, Daniel J., 2014. "Risk in Investment Decision Making and Greenhouse Tomato Production Expansion in Florida," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 17(4), pages 1-26, November.
    8. Fumasi, Roland J. & Klose, Steven L. & Kaase, Greg H. & Richardson, James W. & Outlaw, Joe L., 2008. "Viability of cellulosic feedstock production from producer to biorefinery," Integration of Agricultural and Energy Systems Conference, February 12-13, 2008, Atlanta, Georgia 48716, Farm Foundation.
    9. Eihab Fathelrahman & Aydin Basarir & Mohamed Gheblawi & Sherin Sherif & James Ascough, 2014. "Economic Risk and Efficiency Assessment of Fisheries in Abu-Dhabi, United Arab Emirates (UAE): A Stochastic Approach," Sustainability, MDPI, vol. 6(6), pages 1-21, June.
    10. Tzouramani, Irene & Karanikolas, Pavlos & Alexopoulos, George, 2008. "Risk and Income Risk Management Issues for Organic Crops in Greece," 108th Seminar, February 8-9, 2008, Warsaw, Poland 48116, European Association of Agricultural Economists.
    11. Lien, Gudbrand D. & Flaten, Ola & Schumann, Keith D. & Richardson, James W. & Korsaeth, Audun & Eltun, Ragnar, 2005. "Comparison of Risk Between Cropping Systems in Eastern Norway," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24663, European Association of Agricultural Economists.
    12. Tonnang, Henri E.Z. & Hervé, Bisseleua D.B. & Biber-Freudenberger, Lisa & Salifu, Daisy & Subramanian, Sevgan & Ngowi, Valentine B. & Guimapi, Ritter Y.A. & Anani, Bruce & Kakmeni, Francois M.M. & Aff, 2017. "Advances in crop insect modelling methods—Towards a whole system approach," Ecological Modelling, Elsevier, vol. 354(C), pages 88-103.
    13. Acosta, Hernando & Wu, Dongrui & Forrest, Barrie M., 2010. "Fuzzy experts on recreational vessels, a risk modelling approach for marine invasions," Ecological Modelling, Elsevier, vol. 221(5), pages 850-863.
    14. Asci, Serhat & VanSickle, John J. & Fry, Curtiss J. & Thomas, John, 2015. "Where is Risk in Fumigation Choice: Methyl Bromide versus Alternatives?," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196862, Southern Agricultural Economics Association.
    15. Todorov, Vladislav & Marinova, Dora, 2011. "Modelling sustainability," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1397-1408.
    16. Williams, Jeffery R. & Llewelyn, Richard V. & Pendell, Dustin L. & Schlegel, Alan J. & Troy, Dumler, 2009. "A Risk Analysis of Converting CRP Acres to a Wheat-Sorghum-Fallow Rotation," 2009 Annual Meeting, January 31-February 3, 2009, Atlanta, Georgia 45985, Southern Agricultural Economics Association.
    17. Houshyar, Ehsan & Azadi, Hossein & Almassi, Morteza & Sheikh Davoodi, Mohammad Javad & Witlox, Frank, 2012. "Sustainable and efficient energy consumption of corn production in Southwest Iran: Combination of multi-fuzzy and DEA modeling," Energy, Elsevier, vol. 44(1), pages 672-681.
    18. Tanner, Sophia & Garnache, Cloe, 2017. "The Cost of Wildfires in Heavily Urbanized Areas: A Hedonic Approach," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 259167, Agricultural and Applied Economics Association.
    19. Ji Yun Lee & Fangjiao Ma & Yue Li, 2022. "Understanding homeowner proactive actions for managing wildfire risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 114(2), pages 1525-1547, November.
    20. Guido Franco & Daniel Cayan & Susanne Moser & Michael Hanemann & Myoung-Ae Jones, 2011. "Second California Assessment: integrated climate change impacts assessment of natural and managed systems. Guest editorial," Climatic Change, Springer, vol. 109(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:7:y:2015:i:4:p:3571-3591:d:47364. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.