IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v6y2014i4p2087-2117d35048.html
   My bibliography  Save this article

A GIS-Based Approach in Support of Spatial Planning for Renewable Energy: A Case Study of Fukushima, Japan

Author

Listed:
  • Qianna Wang

    (Laboratory of Spatial Planning (Town and Country Planning), Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo City, Chiba 271-8510, Japan)

  • Martin Mwirigi M'Ikiugu

    (Laboratory of Spatial Planning (Town and Country Planning), Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo City, Chiba 271-8510, Japan)

  • Isami Kinoshita

    (Laboratory of Spatial Planning (Town and Country Planning), Graduate School of Horticulture, Chiba University, Matsudo 648, Matsudo City, Chiba 271-8510, Japan)

Abstract

This paper presents an approach in support of spatial planning for renewable energy at the regional level. It aims to establish an elaborate and informative procedure, as well as integrated quantification and visualization, to support decision making. The proposed approach is composed of a set of sequential steps that include primary energy consumption estimation, renewable energy potential estimation, energy self-sufficiency analysis, and composite map preparation using Geographic Information System (GIS). GIS is used to analyze solar, wind, biomass, geothermal, and hydro-power potential within Fukushima Prefecture, Japan. Potential sites are determined based on geographic, topographic, and land use constraints. Evacuees’ population and forest radiation levels are specifically considered in the context of consequent issues emanating from Fukushima Daiichi nuclear crisis. Energy self-sufficiency analysis has been conducted for years 2020 and 2030. A composite map showing potential sites and their interrelation to the above renewable energy resources has also been presented. These results may support decision making in regional renewable energy planning, by providing information on regional potentials and restrictions to different energy stakeholders. This can help to build an energy developmental vision, which can drive regional energy development towards sustainability. The proposed approach can also be applied to other Japanese municipalities or regions. It provides an example on how to establish local GIS databases through the utilization of various online open GIS resources in Japan.

Suggested Citation

  • Qianna Wang & Martin Mwirigi M'Ikiugu & Isami Kinoshita, 2014. "A GIS-Based Approach in Support of Spatial Planning for Renewable Energy: A Case Study of Fukushima, Japan," Sustainability, MDPI, vol. 6(4), pages 1-31, April.
  • Handle: RePEc:gam:jsusta:v:6:y:2014:i:4:p:2087-2117:d:35048
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/6/4/2087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/6/4/2087/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arnette, Andrew N. & Zobel, Christopher W., 2011. "Spatial analysis of renewable energy potential in the greater southern Appalachian mountains," Renewable Energy, Elsevier, vol. 36(11), pages 2785-2798.
    2. Celiktas, Melih Soner & Kocar, Gunnur, 2010. "From potential forecast to foresight of Turkey's renewable energy with Delphi approach," Energy, Elsevier, vol. 35(5), pages 1973-1980.
    3. Terrados, J. & Almonacid, G. & Pérez-Higueras, P., 2009. "Proposal for a combined methodology for renewable energy planning. Application to a Spanish region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2022-2030, October.
    4. Ramachandra, T.V. & Shruthi, B.V., 2007. "Spatial mapping of renewable energy potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1460-1480, September.
    5. Georgopoulou, E. & Lalas, D. & Papagiannakis, L., 1997. "A multicriteria decision aid approach for energy planning problems: The case of renewable energy option," European Journal of Operational Research, Elsevier, vol. 103(1), pages 38-54, November.
    6. Dincer, Ibrahim, 2000. "Renewable energy and sustainable development: a crucial review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 157-175, June.
    7. Sliz-Szkliniarz, Beata & Vogt, Joachim, 2011. "GIS-based approach for the evaluation of wind energy potential: A case study for the Kujawsko-Pomorskie Voivodeship," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1696-1707, April.
    8. Løken, Espen, 2007. "Use of multicriteria decision analysis methods for energy planning problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1584-1595, September.
    9. Beccali, M. & Cellura, M. & Mistretta, M., 2003. "Decision-making in energy planning. Application of the Electre method at regional level for the diffusion of renewable energy technology," Renewable Energy, Elsevier, vol. 28(13), pages 2063-2087.
    10. Voivontas, D. & Assimacopoulos, D. & Mourelatos, A. & Corominas, J., 1998. "Evaluation of Renewable Energy potential using a GIS decision support system," Renewable Energy, Elsevier, vol. 13(3), pages 333-344.
    11. del Río, Pablo & Burguillo, Mercedes, 2008. "Assessing the impact of renewable energy deployment on local sustainability: Towards a theoretical framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1325-1344, June.
    12. Yue, Cheng-Dar & Wang, Shi-Sian, 2006. "GIS-based evaluation of multifarious local renewable energy sources: a case study of the Chigu area of southwestern Taiwan," Energy Policy, Elsevier, vol. 34(6), pages 730-742, April.
    13. Yosef Jabareen, 2008. "A New Conceptual Framework for Sustainable Development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 10(2), pages 179-192, April.
    14. Sarafidis, Y. & Diakoulaki, D. & Papayannakis, L. & Zervos, A., 1999. "A regional planning approach for the promotion of renewable energies," Renewable Energy, Elsevier, vol. 18(3), pages 317-330.
    15. Tsoutsos, Theocharis & Drandaki, Maria & Frantzeskaki, Niki & Iosifidis, Eleftherios & Kiosses, Ioannis, 2009. "Sustainable energy planning by using multi-criteria analysis application in the island of Crete," Energy Policy, Elsevier, vol. 37(5), pages 1587-1600, May.
    16. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
    17. Vera, Ivan & Langlois, Lucille, 2007. "Energy indicators for sustainable development," Energy, Elsevier, vol. 32(6), pages 875-882.
    18. Van Hoesen, John & Letendre, Steven, 2010. "Evaluating potential renewable energy resources in Poultney, Vermont: A GIS-based approach to supporting rural community energy planning," Renewable Energy, Elsevier, vol. 35(9), pages 2114-2122.
    19. Baban, Serwan M.J & Parry, Tim, 2001. "Developing and applying a GIS-assisted approach to locating wind farms in the UK," Renewable Energy, Elsevier, vol. 24(1), pages 59-71.
    20. Østergaard, Poul Alberg & Lund, Henrik, 2011. "A renewable energy system in Frederikshavn using low-temperature geothermal energy for district heating," Applied Energy, Elsevier, vol. 88(2), pages 479-487, February.
    21. Clarke, J.A. & Grant, A.D., 1996. "Planning support tools for the integration of renewable energy at the regional level," Renewable Energy, Elsevier, vol. 9(1), pages 1090-1093.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pillot, Benjamin & Al-Kurdi, Nadeem & Gervet, Carmen & Linguet, Laurent, 2020. "An integrated GIS and robust optimization framework for solar PV plant planning scenarios at utility scale," Applied Energy, Elsevier, vol. 260(C).
    2. Feng Qing & Xiaohuan Liu & Zhaoyong Jiang & Shaoda Li, 2020. "Assessment of energy strategy pressure based on geographical information system," Energy & Environment, , vol. 31(6), pages 1031-1054, September.
    3. Zareei, Samira, 2018. "Evaluation of biogas potential from livestock manures and rural wastes using GIS in Iran," Renewable Energy, Elsevier, vol. 118(C), pages 351-356.
    4. Yujing Zhao & Hong Leng & Pingjun Sun & Qing Yuan, 2018. "A Spatial Zoning Model of Municipal Administrative Areas Based on Major Function-Oriented Zones," Sustainability, MDPI, vol. 10(9), pages 1-25, August.
    5. Al Garni, Hassan Z. & Awasthi, Anjali, 2017. "Solar PV power plant site selection using a GIS-AHP based approach with application in Saudi Arabia," Applied Energy, Elsevier, vol. 206(C), pages 1225-1240.
    6. Qianna Wang & Martin Mwirigi M’Ikiugu & Isami Kinoshita & Yanyun Luo, 2016. "GIS-Based Approach for Municipal Renewable Energy Planning to Support Post-Earthquake Revitalization: A Japanese Case Study," Sustainability, MDPI, vol. 8(7), pages 1-20, July.
    7. Sultan Al-Shammari & Wonsuk Ko & Essam A. Al Ammar & Majed A. Alotaibi & Hyeong-Jin Choi, 2021. "Optimal Decision-Making in Photovoltaic System Selection in Saudi Arabia," Energies, MDPI, vol. 14(2), pages 1-18, January.
    8. González, Ainhoa & Connell, Peter, 2022. "Developing a renewable energy planning decision-support tool: Stakeholder input guiding strategic decisions," Applied Energy, Elsevier, vol. 312(C).
    9. Harper, Michael & Anderson, Ben & James, Patrick A.B. & Bahaj, AbuBakr S., 2019. "Onshore wind and the likelihood of planning acceptance: Learning from a Great Britain context," Energy Policy, Elsevier, vol. 128(C), pages 954-966.
    10. Dehghani, Ehsan & Jabalameli, Mohammad Saeed & Jabbarzadeh, Armin, 2018. "Robust design and optimization of solar photovoltaic supply chain in an uncertain environment," Energy, Elsevier, vol. 142(C), pages 139-156.
    11. Saeidi, Reza & Noorollahi, Younes & Aghaz, Javad & Chang, Soowon, 2023. "FUZZY-TOPSIS method for defining optimal parameters and finding suitable sites for PV power plants," Energy, Elsevier, vol. 282(C).
    12. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    13. Arabatzis, Garyfallos & Kyriakopoulos, Grigorios & Tsialis, Panagiotis, 2017. "Typology of regional units based on RES plants: The case of Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1424-1434.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    2. Schallenberg-Rodríguez, Julieta & Notario-del Pino, Jesús, 2014. "Evaluation of on-shore wind techno-economical potential in regions and islands," Applied Energy, Elsevier, vol. 124(C), pages 117-129.
    3. Sánchez-Lozano, Juan M. & Henggeler Antunes, Carlos & García-Cascales, M. Socorro & Dias, Luis C., 2014. "GIS-based photovoltaic solar farms site selection using ELECTRE-TRI: Evaluating the case for Torre Pacheco, Murcia, Southeast of Spain," Renewable Energy, Elsevier, vol. 66(C), pages 478-494.
    4. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    5. Pilar Díaz-Cuevas, 2018. "GIS-Based Methodology for Evaluating the Wind-Energy Potential of Territories: A Case Study from Andalusia (Spain)," Energies, MDPI, vol. 11(10), pages 1-16, October.
    6. Sola, Antonio Vanderley Herrero & Mota, Caroline Maria de Miranda & Kovaleski, João Luiz, 2011. "A model for improving energy efficiency in industrial motor system using multicriteria analysis," Energy Policy, Elsevier, vol. 39(6), pages 3645-3654, June.
    7. Janke, Jason R., 2010. "Multicriteria GIS modeling of wind and solar farms in Colorado," Renewable Energy, Elsevier, vol. 35(10), pages 2228-2234.
    8. Grassi, Stefano & Chokani, Ndaona & Abhari, Reza S., 2012. "Large scale technical and economical assessment of wind energy potential with a GIS tool: Case study Iowa," Energy Policy, Elsevier, vol. 45(C), pages 73-85.
    9. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.
    10. Schallenberg-Rodríguez, Julieta & García Montesdeoca, Nuria, 2018. "Spatial planning to estimate the offshore wind energy potential in coastal regions and islands. Practical case: The Canary Islands," Energy, Elsevier, vol. 143(C), pages 91-103.
    11. Calvert, K., 2011. "Geomatics and bioenergy feasibility assessments: Taking stock and looking forward," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1117-1124, February.
    12. Sánchez-Lozano, Juan M. & Teruel-Solano, Jerónimo & Soto-Elvira, Pedro L. & Socorro García-Cascales, M., 2013. "Geographical Information Systems (GIS) and Multi-Criteria Decision Making (MCDM) methods for the evaluation of solar farms locations: Case study in south-eastern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 544-556.
    13. Ruiz-Arias, J.A. & Terrados, J. & Pérez-Higueras, P. & Pozo-Vázquez, D. & Almonacid, G., 2012. "Assessment of the renewable energies potential for intensive electricity production in the province of Jaén, southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2994-3001.
    14. Haurant, P. & Oberti, P. & Muselli, M., 2011. "Multicriteria selection aiding related to photovoltaic plants on farming fields on Corsica island: A real case study using the ELECTRE outranking framework," Energy Policy, Elsevier, vol. 39(2), pages 676-688, February.
    15. Alkan, Ömer & Albayrak, Özlem Karadağ, 2020. "Ranking of renewable energy sources for regions in Turkey by fuzzy entropy based fuzzy COPRAS and fuzzy MULTIMOORA," Renewable Energy, Elsevier, vol. 162(C), pages 712-726.
    16. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    17. Abdulla Alabbasi & Jhuma Sadhukhan & Matthew Leach & Mohammed Sanduk, 2022. "Sustainable Indicators for Integrating Renewable Energy in Bahrain’s Power Generation," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    18. Tsoutsos, T. & Tsitoura, I. & Kokologos, D. & Kalaitzakis, K., 2015. "Sustainable siting process in large wind farms case study in Crete," Renewable Energy, Elsevier, vol. 75(C), pages 474-480.
    19. Prasad, Ravita D. & Bansal, R.C. & Raturi, Atul, 2014. "Multi-faceted energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 686-699.
    20. Theodoridou, Ifigeneia & Karteris, Marinos & Mallinis, Georgios & Papadopoulos, Agis M. & Hegger, Manfred, 2012. "Assessment of retrofitting measures and solar systems' potential in urban areas using Geographical Information Systems: Application to a Mediterranean city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6239-6261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:6:y:2014:i:4:p:2087-2117:d:35048. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.