IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i5p2202-d1352365.html
   My bibliography  Save this article

Assessment of Groundwater Potential Zones Utilizing Geographic Information System-Based Analytical Hierarchy Process, Vlse Kriterijumska Optimizacija Kompromisno Resenje, and Technique for Order Preference by Similarity to Ideal Solution Methods: A Case Study in Mersin, Türkiye

Author

Listed:
  • Mehmet Özgür Çelik

    (Geomatics Engineering Department, Engineering Faculty, Mersin University, 33343 Mersin, Türkiye)

  • Lütfiye Kuşak

    (Geomatics Engineering Department, Engineering Faculty, Mersin University, 33343 Mersin, Türkiye)

  • Murat Yakar

    (Geomatics Engineering Department, Engineering Faculty, Mersin University, 33343 Mersin, Türkiye)

Abstract

The indiscriminate use of surface water has heightened the demand for groundwater supplies. Therefore, it is critical to locate potential groundwater sources to develop alternative water resources. Groundwater detection is tremendously valuable, as is sustainable groundwater management. Mersin, in southern Türkiye, is expected to confront drought shortly due to increased population, industry, and global climate change. The groundwater potential zones of Mersin were determined in this study by GIS-based AHP, VIKOR, and TOPSIS methods. Fifteen parameters were used for this goal. The study area was separated into five categories. The results show that the study area can be divided into “Very High” zones (4.98%, 5.94%, 7.96%), followed by “High” zones (10.89%, 10.32%, 16.50%), “Moderate” zones (60.68%, 52.41%, 51.56%), “Low” zones (21.28%, 28.53%, 20.90%), and “Very Low” zones (2.18%, 2.80%, 3.07%) in turn. Data from 60 wells were used to validate potential groundwater resources. The ROC-AUC technique was utilized for this. It was seen that the performance of the VIKOR model is better than that of the AHP and TOPSIS (76.5%). The findings demonstrated that the methods and parameters used are reliable for sustainable groundwater management. We believe that the study will also help decision makers for this purpose.

Suggested Citation

  • Mehmet Özgür Çelik & Lütfiye Kuşak & Murat Yakar, 2024. "Assessment of Groundwater Potential Zones Utilizing Geographic Information System-Based Analytical Hierarchy Process, Vlse Kriterijumska Optimizacija Kompromisno Resenje, and Technique for Order Prefe," Sustainability, MDPI, vol. 16(5), pages 1-27, March.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2202-:d:1352365
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/5/2202/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/5/2202/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yalpir, Sukran & Sisman, Suleyman & Akar, Ali Utku & Unel, Fatma Bunyan, 2021. "Feature selection applications and model validation for mass real estate valuation systems," Land Use Policy, Elsevier, vol. 108(C).
    2. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    3. Peiyue Li & Hui Qian & Jianhua Wu, 2018. "Conjunctive use of groundwater and surface water to reduce soil salinization in the Yinchuan Plain, North-West China," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 34(3), pages 337-353, May.
    4. Kuo, Ting, 2017. "A modified TOPSIS with a different ranking index," European Journal of Operational Research, Elsevier, vol. 260(1), pages 152-160.
    5. Soyoung Park & Se-Yeong Hamm & Hang-Tak Jeon & Jinsoo Kim, 2017. "Evaluation of Logistic Regression and Multivariate Adaptive Regression Spline Models for Groundwater Potential Mapping Using R and GIS," Sustainability, MDPI, vol. 9(7), pages 1-20, July.
    6. Duong Hai Ha & Phong Tung Nguyen & Romulus Costache & Nadhir Al-Ansari & Tran Phong & Huu Duy Nguyen & Mahdis Amiri & Rohit Sharma & Indra Prakash & Hiep Le & Hanh Bich Thi Nguyen & Binh Thai Pham, 2021. "Quadratic Discriminant Analysis Based Ensemble Machine Learning Models for Groundwater Potential Modeling and Mapping," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(13), pages 4415-4433, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flavio Martins & Maria Fatima Almeida & Rodrigo Calili & Agatha Oliveira, 2020. "Design Thinking Applied to Smart Home Projects: A User-Centric and Sustainable Perspective," Sustainability, MDPI, vol. 12(23), pages 1-27, December.
    2. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    3. Patricija Bajec & Danijela Tuljak-Suban, 2019. "An Integrated Analytic Hierarchy Process—Slack Based Measure-Data Envelopment Analysis Model for Evaluating the Efficiency of Logistics Service Providers Considering Undesirable Performance Criteria," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    4. Xinxin Liu & Xiaosheng Wang & Haiying Guo & Xiaojie An, 2021. "Benefit Allocation in Shared Water-Saving Management Contract Projects Based on Modified Expected Shapley Value," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(1), pages 39-62, January.
    5. Sushil, 2019. "Efficient interpretive ranking process incorporating implicit and transitive dominance relationships," Annals of Operations Research, Springer, vol. 283(1), pages 1489-1516, December.
    6. Moumita Palchaudhuri & Sujata Biswas, 2016. "Application of AHP with GIS in drought risk assessment for Puruliya district, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(3), pages 1905-1920, December.
    7. Zhang, Sheng & Lin, Zhang & Ai, Zhengtao & Huan, Chao & Cheng, Yong & Wang, Fenghao, 2019. "Multi-criteria performance optimization for operation of stratum ventilation under heating mode," Applied Energy, Elsevier, vol. 239(C), pages 969-980.
    8. D. K. Choudhury, 2019. "Standard Critical Path and Selection of Most Economic and Quality Contractors for Construction of Thermal Power Plant: A Case Study in NTPC," Metamorphosis: A Journal of Management Research, , vol. 18(2), pages 103-118, December.
    9. Choudhary, Devendra & Shankar, Ravi, 2012. "An STEEP-fuzzy AHP-TOPSIS framework for evaluation and selection of thermal power plant location: A case study from India," Energy, Elsevier, vol. 42(1), pages 510-521.
    10. Madjid Tavana & Mariya Sodenkamp & Leena Suhl, 2010. "A soft multi-criteria decision analysis model with application to the European Union enlargement," Annals of Operations Research, Springer, vol. 181(1), pages 393-421, December.
    11. Levary, Reuven R. & Wan, Ke, 1999. "An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment," Omega, Elsevier, vol. 27(6), pages 661-677, December.
    12. Lilian. O. Iheukwumere-Esotu & Akilu Yunusa-Kaltungo, 2021. "Knowledge Criticality Assessment and Codification Framework for Major Maintenance Activities: A Case Study of Cement Rotary Kiln Plant," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    13. Alpana Agarwal & Divina Raghav, 2023. "Analysing Determinants of Employee Performance Based on Reverse Mentoring and Employer Branding Using Analytic Hierarchical Process," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 48(3), pages 343-358, August.
    14. María Pilar de la Cruz López & Juan José Cartelle Barros & Alfredo del Caño Gochi & Manuel Lara Coira, 2021. "New Approach for Managing Sustainability in Projects," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    15. Sward, Jeffrey A. & Nilson, Roberta S. & Katkar, Venktesh V. & Stedman, Richard C. & Kay, David L. & Ifft, Jennifer E. & Zhang, K. Max, 2021. "Integrating social considerations in multicriteria decision analysis for utility-scale solar photovoltaic siting," Applied Energy, Elsevier, vol. 288(C).
    16. Xiaodong Yuan & Weiling Song, 2022. "Evaluating technology innovation capabilities of companies based on entropy- TOPSIS: the case of solar cell companies," Information Technology and Management, Springer, vol. 23(2), pages 65-76, June.
    17. Mou, W.M. & Wong, W.-K. & McAleer, M.J., 2018. "Financial Credit Risk and Core Enterprise Supply Chains," Econometric Institute Research Papers EI2018-27, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    18. Marco Rogna, 2019. "A First-Phase Screening Device for Site Selection of Large-Scale Solar Plants with an Application to Italy," BEMPS - Bozen Economics & Management Paper Series BEMPS57, Faculty of Economics and Management at the Free University of Bozen.
    19. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    20. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:5:p:2202-:d:1352365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.