IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i2p475-d1313559.html
   My bibliography  Save this article

Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture

Author

Listed:
  • Sakshi Balyan

    (Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India)

  • Harsita Jangir

    (Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India)

  • Shakti Nath Tripathi

    (Department of Botany, Nehru Gram Bharati Deemed to Be University, Prayagraj 221505, India)

  • Arpita Tripathi

    (Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India)

  • Tripta Jhang

    (Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India)

  • Praveen Pandey

    (Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India)

Abstract

Agriculture is essential to the existence of the human race, as well as the foundation of our civilization, because it provides food, fuel, fiber, and other resources necessary for survival; however, it is facing critical challenges due to anthropogenic climate change, which hampers food and nutritional security. Consequently, the agriculture industry must adjust to farming issues, such as the shift in global temperatures and environmental degradation, the scarcity of farm workers, population growth, and dietary changes. Several measures have been implemented to enhance agricultural productivity, including plant breeding, genetic engineering, and precision agriculture. In recent years, the world has witnessed the burgeoning development of novel scientific innovations and technological advancements enabled by drones, smart sensors, robotics, and remote sensing, resulting in a plethora of revolutionary methods that can be applied to real-time crop modeling, high-throughput phenotyping, weather forecasting, yield prediction, fertilizer application, disease detection, market trading, farming practices, and other environmental practices vital to crop growth, yield, and quality. Furthermore, the rise in big data, advanced analytics, falling technology costs, faster internet connections, increased connectivity, and increases in computational power are all part of the current digitalization wave that has the potential to support commercial agriculture in achieving its goals of smart farming, resilience, productivity, and sustainability. These technologies enable efficient monitoring of crops, soil, and environmental conditions over large areas, providing farmers with data to support precise management that optimizes productivity and minimizes environmental impacts. Though smart farming has significant potential, challenges like high implementation costs, data security concerns, and inadequate digital literacy among farmers remain. In summary, agriculture is rapidly transforming from conventional to digital farming, offering global solutions, efficient resource utilization, and minimized input costs while fostering farmer livelihoods and economic growth. Delivering a comprehensive view of how technology could help in tackling critical issues like environmental degradation and threatened world biodiversity, this perspective emphasizes the perks of digitalization. Future advancements may involve data encryption, digital literacy, and particular economic policies.

Suggested Citation

  • Sakshi Balyan & Harsita Jangir & Shakti Nath Tripathi & Arpita Tripathi & Tripta Jhang & Praveen Pandey, 2024. "Seeding a Sustainable Future: Navigating the Digital Horizon of Smart Agriculture," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:475-:d:1313559
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/2/475/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/2/475/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    2. Krijn J. Poppe & Sjaak Wolfert & Cor Verdouw & Tim Verwaart, 2013. "Information and Communication Technology as a Driver for Change in Agri-food Chains," EuroChoices, The Agricultural Economics Society, vol. 12(1), pages 60-65, April.
    3. Jig Han Jeong & Jonathan P Resop & Nathaniel D Mueller & David H Fleisher & Kyungdahm Yun & Ethan E Butler & Dennis J Timlin & Kyo-Moon Shim & James S Gerber & Vangimalla R Reddy & Soo-Hyung Kim, 2016. "Random Forests for Global and Regional Crop Yield Predictions," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nadia Belmonte & Carlo Luetto & Stefano Staulo & Paola Rizzi & Marcello Baricco, 2017. "Case Studies of Energy Storage with Fuel Cells and Batteries for Stationary and Mobile Applications," Challenges, MDPI, vol. 8(1), pages 1-15, March.
    2. Deng, Juntao & Pan, Shijia & Zhou, Mingu & Gao, Wen & Yan, Yuncai & Niu, Zijie & Han, Wenting, 2023. "Optimum sampling window size and vegetation index selection for low-altitude multispectral estimation of root soil moisture content for Xuxiang Kiwifruit," Agricultural Water Management, Elsevier, vol. 282(C).
    3. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
    4. Alfredo Valdes Ramos & Elsa N. Aguilera Gonzalez & Gloria Tobón Echeverri & Luis Samaniego Moreno & Lourdes Díaz Jiménez & Salvador Carlos Hernández, 2019. "Potential Uses of Treated Municipal Wastewater in a Semiarid Region of Mexico," Sustainability, MDPI, vol. 11(8), pages 1-23, April.
    5. Ahearn, Mary Clare & Armbruster, Walt & Young, Robert, 2016. "Big Data's Potential to Improve Food Supply Chain Environmental Sustainability and Food Safety," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 19(A), pages 1-18, June.
    6. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    7. Indy Man Kit Ho & Anthony Weldon & Jason Tze Ho Yong & Candy Tze Tim Lam & Jaime Sampaio, 2023. "Using Machine Learning Algorithms to Pool Data from Meta-Analysis for the Prediction of Countermovement Jump Improvement," IJERPH, MDPI, vol. 20(10), pages 1-15, May.
    8. Romero-Trigueros, Cristina & Nortes, Pedro A. & Alarcón, Juan J. & Hunink, Johannes E. & Parra, Margarita & Contreras, Sergio & Droogers, Peter & Nicolás, Emilio, 2017. "Effects of saline reclaimed waters and deficit irrigation on Citrus physiology assessed by UAV remote sensing," Agricultural Water Management, Elsevier, vol. 183(C), pages 60-69.
    9. Belmonte, N. & Staulo, S. & Fiorot, S. & Luetto, C. & Rizzi, P. & Baricco, M., 2018. "Fuel cell powered octocopter for inspection of mobile cranes: Design, cost analysis and environmental impacts," Applied Energy, Elsevier, vol. 215(C), pages 556-565.
    10. Florian Schierhorn & Max Hofmann & Taras Gagalyuk & Igor Ostapchuk & Daniel Müller, 2021. "Machine learning reveals complex effects of climatic means and weather extremes on wheat yields during different plant developmental stages," Climatic Change, Springer, vol. 169(3), pages 1-19, December.
    11. Puyu Feng & Bin Wang & De Li Liu & Hongtao Xing & Fei Ji & Ian Macadam & Hongyan Ruan & Qiang Yu, 2018. "Impacts of rainfall extremes on wheat yield in semi-arid cropping systems in eastern Australia," Climatic Change, Springer, vol. 147(3), pages 555-569, April.
    12. Ihuoma, Samuel O. & Madramootoo, Chandra A., 2019. "Crop reflectance indices for mapping water stress in greenhouse grown bell pepper," Agricultural Water Management, Elsevier, vol. 219(C), pages 49-58.
    13. Kenney, Martin & Serhan, Hiam & Trystram, Gilles, 2020. "Digitalization and Platforms in Agriculture: Organizations, Power Asymmetry, and Collective Action Solutions," ETLA Working Papers 78, The Research Institute of the Finnish Economy.
    14. Martin Kuradusenge & Eric Hitimana & Damien Hanyurwimfura & Placide Rukundo & Kambombo Mtonga & Angelique Mukasine & Claudette Uwitonze & Jackson Ngabonziza & Angelique Uwamahoro, 2023. "Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize," Agriculture, MDPI, vol. 13(1), pages 1-19, January.
    15. Xu Zhang & Guangsheng Chen & Lingxiao Cai & Hongbo Jiao & Jianwen Hua & Xifang Luo & Xinliang Wei, 2021. "Impact Assessments of Typhoon Lekima on Forest Damages in Subtropical China Using Machine Learning Methods and Landsat 8 OLI Imagery," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    16. Schmidt, Lorenz & Odening, Martin & Schlanstein, Johann & Ritter, Matthias, 2021. "Estimation of the Farm-Level Yield-Weather-Relation Using Machine Learning," 61st Annual Conference, Berlin, Germany, September 22-24, 2021 317075, German Association of Agricultural Economists (GEWISOLA).
    17. Beatrice Garske & Antonia Bau & Felix Ekardt, 2021. "Digitalization and AI in European Agriculture: A Strategy for Achieving Climate and Biodiversity Targets?," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    18. Grados, D. & Reynarfaje, X. & Schrevens, E., 2020. "A methodological approach to assess canopy NDVI–based tomato dynamics under irrigation treatments," Agricultural Water Management, Elsevier, vol. 240(C).
    19. Timsina, Jagadish & Dutta, Sudarshan & Devkota, Krishna Prasad & Chakraborty, Somsubhra & Neupane, Ram Krishna & Bishta, Sudarshan & Amgain, Lal Prasad & Singh, Vinod K. & Islam, Saiful & Majumdar, Ka, 2021. "Improved nutrient management in cereals using Nutrient Expert and machine learning tools: Productivity, profitability and nutrient use efficiency," Agricultural Systems, Elsevier, vol. 192(C).
    20. Wu, Yinshan & Jiang, Jie & Zhang, Xiufeng & Zhang, Jiayi & Cao, Qiang & Tian, Yongchao & Zhu, Yan & Cao, Weixing & Liu, Xiaojun, 2023. "Combining machine learning algorithm and multi-temporal temperature indices to estimate the water status of rice," Agricultural Water Management, Elsevier, vol. 289(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:2:p:475-:d:1313559. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.