IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v202y2018icp241-252.html
   My bibliography  Save this article

Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements

Author

Listed:
  • Padilla-Díaz, C.M.
  • Rodriguez-Dominguez, C.M.
  • Hernandez-Santana, V.
  • Perez-Martin, A.
  • Fernandes, R.D.M.
  • Montero, A.
  • García, J.M.
  • Fernández, J.E.

Abstract

We evaluated the suitability of scheduling a regulated deficit irrigation strategy in a hedgerow olive orchard with high plant density from leaf turgor related measurements. Measurements were made for two consecutive years at an olive orchard with 1667 ‘Arbequina’ trees per hectare where we had two deficit irrigation treatments, 45RDICC and 45RDITP, plus a full irrigation as a control. The two 45RDI treatments consisted on applying the same regulated deficit irrigation strategy, aimed to supply a total of 45% of the irrigation needs. The 45RDICC treatment however, was scheduled with the crop coefficient approach, while the 45RDITP treatment was scheduled with an irrigation scheduling approach based on leaf turgor related measurements, first suggested by Padilla-Díaz et al. (2016, Agric. Water Manage. 164:28–37). They worked at the orchard in 2014, and made a preliminary evaluation of the irrigation scheduling approach by comparing 45RDITP versus 45RDICC in terms of irrigation dose and frequency, predawn and midday stem water potential (Ψstem), and the fruit yields of each treatment. In this work, we considered the same variables as well as maximum daily values of stomatal conductance and CO2 net assimilation, the seasonal courses of the number of internodes in current-year shoots, leaf area and oil accumulation in the fruits, and total fruit and oil yields. All those variables were monitored both in 2014 and 2015, and we found no differences between the 45RDITP and the 45RDICC treatments, for any of them. The irrigation amounts applied to each treatment differed occasionally, but the total water supplies were similar to both 45RDI treatments. Our results, therefore, confirm the suitability of the irrigation scheduling approach proposed by Padilla-Díaz et al. (2016) to apply regulated deficit irrigation in commercial hedgerow olive orchards. We found additional evidence for the 15% changes on the irrigation amount recommended by the irrigation scheduling approach as being suitable for the orchard conditions. Caution must be taken when applying this approach to other olive orchards, since the relations between the tree water status and the shape of the daily curves recorded with the ZIM probes may depend on the cultivar and orchard conditions.

Suggested Citation

  • Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernandes, R.D.M. & Montero, A. & García, J.M. & Fernández, J.E., 2018. "Water status, gas exchange and crop performance in a super high density olive orchard under deficit irrigation scheduled from leaf turgor measurements," Agricultural Water Management, Elsevier, vol. 202(C), pages 241-252.
  • Handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:241-252
    DOI: 10.1016/j.agwat.2018.01.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377418300544
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2018.01.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Egea, Gregorio & Fernández, José E. & Alcon, Francisco, 2017. "Financial assessment of adopting irrigation technology for plant-based regulated deficit irrigation scheduling in super high-density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 47-56.
    2. Ben-Gal, Alon & Kool, Dilia & Agam, Nurit & van Halsema, Gerardo E. & Yermiyahu, Uri & Yafe, Ariel & Presnov, Eugene & Erel, Ran & Majdop, Ahmed & Zipori, Isaac & Segal, Eran & Rüger, Simon & Zimmerma, 2010. "Whole-tree water balance and indicators for short-term drought stress in non-bearing 'Barnea' olives," Agricultural Water Management, Elsevier, vol. 98(1), pages 124-133, December.
    3. Molden, David & Oweis, Theib & Steduto, Pasquale & Bindraban, Prem & Hanjra, Munir A. & Kijne, Jacob, 2010. "Improving agricultural water productivity: Between optimism and caution," Agricultural Water Management, Elsevier, vol. 97(4), pages 528-535, April.
    4. Fernández, J.E. & Rodriguez-Dominguez, C.M. & Perez-Martin, A. & Zimmermann, U. & Rüger, S. & Martín-Palomo, M.J. & Torres-Ruiz, J.M. & Cuevas, M.V. & Sann, C. & Ehrenberger, W. & Diaz-Espejo, A., 2011. "Online-monitoring of tree water stress in a hedgerow olive orchard using the leaf patch clamp pressure probe," Agricultural Water Management, Elsevier, vol. 100(1), pages 25-35.
    5. Gago, J. & Douthe, C. & Coopman, R.E. & Gallego, P.P. & Ribas-Carbo, M. & Flexas, J. & Escalona, J. & Medrano, H., 2015. "UAVs challenge to assess water stress for sustainable agriculture," Agricultural Water Management, Elsevier, vol. 153(C), pages 9-19.
    6. Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (olea europaea L., cv. Morisca) I. - Growth and water relations," Agricultural Water Management, Elsevier, vol. 98(6), pages 941-949, April.
    7. Marino, Giulia & Pernice, Fulvio & Marra, Francesco Paolo & Caruso, Tiziano, 2016. "Validation of an online system for the continuous monitoring of tree water status for sustainable irrigation managements in olive (Olea europaea L.)," Agricultural Water Management, Elsevier, vol. 177(C), pages 298-307.
    8. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernández, J.E., 2016. "Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements," Agricultural Water Management, Elsevier, vol. 164(P1), pages 28-37.
    9. Grattan, S.R. & Berenguer, M.J. & Connell, J.H. & Polito, V.S. & Vossen, P.M., 2006. "Olive oil production as influenced by different quantities of applied water," Agricultural Water Management, Elsevier, vol. 85(1-2), pages 133-140, September.
    10. Velez, J.E. & Intrigliolo, D.S. & Castel, J.R., 2007. "Scheduling deficit irrigation of citrus trees with maximum daily trunk shrinkage," Agricultural Water Management, Elsevier, vol. 90(3), pages 197-204, June.
    11. Hernandez-Santana, V. & Fernández, J.E. & Cuevas, M.V. & Perez-Martin, A. & Diaz-Espejo, A., 2017. "Photosynthetic limitations by water deficit: Effect on fruit and olive oil yield, leaf area and trunk diameter and its potential use to control vegetative growth of super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 184(C), pages 9-18.
    12. Cajias, Evelyn & Antunez, Alejandro & Román, L.F., 2016. "Response to moderate water stress imposed after pit hardening in mature table olive orchard cv. Azapa," Agricultural Water Management, Elsevier, vol. 173(C), pages 76-83.
    13. Perry, Chris, 2011. "Accounting for water use: Terminology and implications for saving water and increasing production," Agricultural Water Management, Elsevier, vol. 98(12), pages 1840-1846, October.
    14. Martín-Vertedor, Ana I. & Rodríguez, Juan M. Pérez & Losada, Henar Prieto & Castiel, Elías Fereres, 2011. "Interactive responses to water deficits and crop load in olive (Olea europaea L., cv. Morisca). II: Water use, fruit and oil yield," Agricultural Water Management, Elsevier, vol. 98(6), pages 950-958, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernandes, R.D.M. & Egea, G. & Hernandez-Santana, V. & Diaz-Espejo, A. & Fernández, J.E. & Perez-Martin, A. & Cuevas, M.V., 2021. "Response of vegetative and fruit growth to the soil volume wetted by irrigation in a super-high-density olive orchard," Agricultural Water Management, Elsevier, vol. 258(C).
    2. Martínez-Gimeno, M.A. & Zahaf, A. & Badal, E. & Paz, S. & Bonet, L. & Pérez-Pérez, J.G., 2022. "Effect of progressive irrigation water reductions on super-high-density olive orchards according to different scarcity scenarios," Agricultural Water Management, Elsevier, vol. 262(C).
    3. Hueso, A. & Trentacoste, E.R. & Junquera, P. & Gómez-Miguel, V. & Gómez-del-Campo, M., 2019. "Differences in stem water potential during oil synthesis determine fruit characteristics and production but not vegetative growth or return bloom in an olive hedgerow orchard (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    4. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    5. Blanco, Victor & Kalcsits, Lee, 2023. "Long-term validation of continuous measurements of trunk water potential and trunk diameter indicate different diurnal patterns for pear under water limitations," Agricultural Water Management, Elsevier, vol. 281(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    2. García-Tejero, I.F. & Hernández, A. & Padilla-Díaz, C.M. & Diaz-Espejo, A. & Fernández, J.E, 2017. "Assessing plant water status in a hedgerow olive orchard from thermography at plant level," Agricultural Water Management, Elsevier, vol. 188(C), pages 50-60.
    3. Hueso, A. & Camacho, G. & Gómez-del-Campo, M., 2021. "Spring deficit irrigation promotes significant reduction on vegetative growth, flowering, fruit growth and production in hedgerow olive orchards (cv. Arbequina)," Agricultural Water Management, Elsevier, vol. 248(C).
    4. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    5. Chehab, Hechmi & Tekaya, Mariem & Mechri, Beligh & Jemai, Abdelmajid & Guiaa, Mohamed & Mahjoub, Zoubeir & Boujnah, Dalenda & Laamari, Salwa & Chihaoui, Badreddine & Zakhama, Houda & Hammami, Mohamed , 2017. "Effect of the Super Absorbent Polymer Stockosorb® on leaf turgor pressure, tree performance and oil quality of olive trees cv. Chemlali grown under field conditions in an arid region of Tunisia," Agricultural Water Management, Elsevier, vol. 192(C), pages 221-231.
    6. Vita Serman, Facundo & Orgaz, Francisco & Starobinsky, Gabriela & Capraro, Flavio & Fereres, Elias, 2021. "Water productivity and net profit of high-density olive orchards in San Juan, Argentina," Agricultural Water Management, Elsevier, vol. 252(C).
    7. Fernandes, R.D.M. & Egea, G. & Hernandez-Santana, V. & Diaz-Espejo, A. & Fernández, J.E. & Perez-Martin, A. & Cuevas, M.V., 2021. "Response of vegetative and fruit growth to the soil volume wetted by irrigation in a super-high-density olive orchard," Agricultural Water Management, Elsevier, vol. 258(C).
    8. Ahumada-Orellana, Luis E. & Ortega-Farías, Samuel & Searles, Peter S., 2018. "Olive oil quality response to irrigation cut-off strategies in a super-high density orchard," Agricultural Water Management, Elsevier, vol. 202(C), pages 81-88.
    9. Padilla-Díaz, C.M. & Rodriguez-Dominguez, C.M. & Hernandez-Santana, V. & Perez-Martin, A. & Fernández, J.E., 2016. "Scheduling regulated deficit irrigation in a hedgerow olive orchard from leaf turgor pressure related measurements," Agricultural Water Management, Elsevier, vol. 164(P1), pages 28-37.
    10. Marino, Giulia & Pernice, Fulvio & Marra, Francesco Paolo & Caruso, Tiziano, 2016. "Validation of an online system for the continuous monitoring of tree water status for sustainable irrigation managements in olive (Olea europaea L.)," Agricultural Water Management, Elsevier, vol. 177(C), pages 298-307.
    11. Agüero Alcaras, L. Martín & Rousseaux, M. Cecilia & Searles, Peter S., 2021. "Yield and water productivity responses of olive trees (cv. Manzanilla) to post-harvest deficit irrigation in a non-Mediterranean climate," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Luxon Nhamo & James Magidi & Adolph Nyamugama & Alistair D. Clulow & Mbulisi Sibanda & Vimbayi G. P. Chimonyo & Tafadzwanashe Mabhaudhi, 2020. "Prospects of Improving Agricultural and Water Productivity through Unmanned Aerial Vehicles," Agriculture, MDPI, vol. 10(7), pages 1-18, July.
    13. Xue, Jingyuan & Guan, Huade & Huo, Zailin & Wang, Fengxin & Huang, Guanhua & Boll, Jan, 2017. "Water saving practices enhance regional efficiency of water consumption and water productivity in an arid agricultural area with shallow groundwater," Agricultural Water Management, Elsevier, vol. 194(C), pages 78-89.
    14. van Halsema, Gerardo E. & Vincent, Linden, 2012. "Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism," Agricultural Water Management, Elsevier, vol. 108(C), pages 9-15.
    15. Mouna Aïachi Mezghani & Amel Mguidiche & Faiza Allouche Khebour & Imen Zouari & Faouzi Attia & Giuseppe Provenzano, 2019. "Water Status and Yield Response to Deficit Irrigation and Fertilization of Three Olive Oil Cultivars under the Semi-Arid Conditions of Tunisia," Sustainability, MDPI, vol. 11(17), pages 1-18, September.
    16. Martín-Palomo, MJ & Andreu, L. & Pérez-López, D. & Centeno, A. & Galindo, A. & Moriana, A. & Corell, M., 2022. "Trunk growth rate frequencies as water stress indicator in almond trees," Agricultural Water Management, Elsevier, vol. 271(C).
    17. Girón, I.F. & Corell, M. & Galindo, A. & Torrecillas, E. & Morales, D. & Dell’Amico, J. & Torrecillas, A. & Moreno, F. & Moriana, A., 2015. "Changes in the physiological response between leaves and fruits during a moderate water stress in table olive trees," Agricultural Water Management, Elsevier, vol. 148(C), pages 280-286.
    18. Memmi, H. & Gijón, M.C. & Couceiro, J.F. & Pérez-López, D., 2016. "Water stress thresholds for regulated deficit irrigation in pistachio trees: Rootstock influence and effects on yield quality," Agricultural Water Management, Elsevier, vol. 164(P1), pages 58-72.
    19. Parvizi, Hossein & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2016. "Physiological and growth responses of pomegranate tree (Punica granatum (L.) cv. Rabab) under partial root zone drying and deficit irrigation regimes," Agricultural Water Management, Elsevier, vol. 163(C), pages 146-158.
    20. Martín-Palomo, M.J. & Corell, M. & Andreu, L. & López-Moreno, Y.E. & Galindo, A. & Moriana, A., 2021. "Identification of water stress conditions in olive trees through frequencies of trunk growth rate," Agricultural Water Management, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:202:y:2018:i:c:p:241-252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.