IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p6084-d1113321.html
   My bibliography  Save this article

The Impact of Optimizing Industrial Energy Efficiency on Agricultural Development in OECD Countries

Author

Listed:
  • Haiyang Shang

    (Business College, Northwest University of Political Science and Law, No. 558 West Chang An Road, Chang An District, Xi’an 710122, China)

  • Ying Feng

    (Business College, Northwest University of Political Science and Law, No. 558 West Chang An Road, Chang An District, Xi’an 710122, China)

  • Ching-Cheng Lu

    (Department of Economics, Soochow University, 56, Kueiyang St., Sec. 1, Taipei 100, Taiwan)

  • Chih-Yu Yang

    (Department of Economics, Soochow University, 56, Kueiyang St., Sec. 1, Taipei 100, Taiwan)

Abstract

This study evaluates the impact of industrial energy efficiency on agricultural development in the 31 member countries of the Organization for Economic Cooperation and Development (OECD) from 2015 to 2019. Using dynamic network slack-based measures (DN-SBM) and dynamic network total factor productivity (DN-TFP) indicators, dynamic cross-period information is used to assess the changes in efficiency and productivity of the industrial and agricultural sectors. The empirical results show that the industrial sector of the OECD is more efficient than the agricultural sector, and while some countries have low efficiency, productivity tends to improve. The study has three contributions: 1. Using the concept of the water–energy–food (WEF) nexus as a framework and combining its elements with variables to evaluate the efficiency performance of OECD countries; 2. using a dynamic two-stage DN-SBM model to objectively assess the overall efficiency value and provide improvement suggestions for different stages; 3. a comprehensive analysis of efficiency and productivity; the results can serve as a reference for OECD countries when formulating policies

Suggested Citation

  • Haiyang Shang & Ying Feng & Ching-Cheng Lu & Chih-Yu Yang, 2023. "The Impact of Optimizing Industrial Energy Efficiency on Agricultural Development in OECD Countries," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6084-:d:1113321
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/6084/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/6084/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Panpan Diao & Zhonggen Zhang & Zhenyong Jin, 2018. "Dynamic and static analysis of agricultural productivity in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(2), pages 293-312, May.
    2. Teng, Xiangyu & Liu, Fan-peng & Chang, Tzu-han & Chiu, Yung-ho, 2023. "Measuring China’s energy efficiency by considering forest carbon sequestration and applying a meta dynamic non-radial directional distance function," Energy, Elsevier, vol. 263(PC).
    3. Magdalena Ziolo & Sandra Jednak & Gordana Savić & Dragana Kragulj, 2020. "Link between Energy Efficiency and Sustainable Economic and Financial Development in OECD Countries," Energies, MDPI, vol. 13(22), pages 1-28, November.
    4. Kaoru Tone & Miki Tsutsui, 2014. "Slacks-Based Network DEA," International Series in Operations Research & Management Science, in: Wade D. Cook & Joe Zhu (ed.), Data Envelopment Analysis, edition 127, chapter 0, pages 231-259, Springer.
    5. Borozan, Djula, 2018. "Technical and total factor energy efficiency of European regions: A two-stage approach," Energy, Elsevier, vol. 152(C), pages 521-532.
    6. Guo, Xiaoying & Lu, Ching-Cheng & Lee, Jen-Hui & Chiu, Yung-Ho, 2017. "Applying the dynamic DEA model to evaluate the energy efficiency of OECD countries and China," Energy, Elsevier, vol. 134(C), pages 392-399.
    7. Panpan Diao & Zhonggen Zhang & Zhenyong Jin, 2018. "Dynamic and static analysis of agricultural productivity in China," China Agricultural Economic Review, Emerald Group Publishing Limited, vol. 10(2), pages 293-312, May.
    8. Binghun Wan & Ende Zhou, 2021. "Research of Total Factor Productivity and Agricultural Management Based on Malmquist-DEA Modeling," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-8, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Shi & Fengping Wu & Huinan Huang & Xinrui Sun & Lina Zhang, 2019. "Comparing Economics, Environmental Pollution and Health Efficiency in China," IJERPH, MDPI, vol. 16(23), pages 1-30, December.
    2. Xuelan Li & Rui Guan, 2023. "How Does Agricultural Mechanization Service Affect Agricultural Green Transformation in China?," IJERPH, MDPI, vol. 20(2), pages 1-23, January.
    3. Ding, Li-Li & Lei, Liang & Zhao, Xin & Calin, Adrian Cantemir, 2020. "Modelling energy and carbon emission performance: A constrained performance index measure," Energy, Elsevier, vol. 197(C).
    4. Yi-Xuan Lu & Si-Ting Wang & Guan-Xin Yao & Jing Xu, 2023. "Green Total Factor Efficiency in Vegetable Production: A Comprehensive Ecological Analysis of China’s Practices," Agriculture, MDPI, vol. 13(10), pages 1-25, October.
    5. Abbas Mardani & Dalia Streimikiene & Tomas Balezentis & Muhamad Zameri Mat Saman & Khalil Md Nor & Seyed Meysam Khoshnava, 2018. "Data Envelopment Analysis in Energy and Environmental Economics: An Overview of the State-of-the-Art and Recent Development Trends," Energies, MDPI, vol. 11(8), pages 1-21, August.
    6. Dongdong Lu & Zilong Wang, 2023. "Towards green economic recovery: how to improve green total factor productivity," Economic Change and Restructuring, Springer, vol. 56(5), pages 3163-3185, October.
    7. Sheng-Hsiung Chiu & Tzu-Yu Lin & Hai-Lan Yang, 2020. "Measuring Energy Performance for Regional Sustainable Development in China: A New Framework based on a Dynamic Two-Stage SBM Approach," Sustainability, MDPI, vol. 12(7), pages 1-15, April.
    8. Toshiyuki Sueyoshi & Mika Goto, 2023. "Energy Intensity, Energy Efficiency and Economic Growth among OECD Nations from 2000 to 2019," Energies, MDPI, vol. 16(4), pages 1-29, February.
    9. Pengfei Ge & Tan Liu & Xiaoxu Wu & Xiulu Huang, 2023. "Heterogenous Urbanization and Agricultural Green Development Efficiency: Evidence from China," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    10. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.
    11. Ito, Junichi & Li, Xinyi, 2023. "Interplay between China’s grain self-sufficiency policy shifts and interregional, intertemporal productivity differences," Food Policy, Elsevier, vol. 117(C).
    12. Xiong, Xi & Yang, Guo-liang & Guan, Zhong-cheng, 2018. "Assessing R&D efficiency using a two-stage dynamic DEA model: A case study of research institutes in the Chinese Academy of Sciences," Journal of Informetrics, Elsevier, vol. 12(3), pages 784-805.
    13. Sungmin Park & Pansoo Kim, 2021. "Operational Performance Evaluation of Korean Ship Parts Manufacturing Industry Using Dynamic Network SBM Model," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    14. Zhang, Caiqing & Chen, Panyu, 2022. "Applying the three-stage SBM-DEA model to evaluate energy efficiency and impact factors in RCEP countries," Energy, Elsevier, vol. 241(C).
    15. Milica Jovanović & Gordana Savić & Yuzhuo Cai & Maja Levi-Jakšić, 2022. "Towards a Triple Helix based efficiency index of innovation systems," Scientometrics, Springer;Akadémiai Kiadó, vol. 127(5), pages 2577-2609, May.
    16. Khalid Mehmood & Yaser Iftikhar & Shouming Chen & Shaheera Amin & Alia Manzoor & Jinlong Pan, 2020. "Analysis of Inter-Temporal Change in the Energy and CO 2 Emissions Efficiency of Economies: A Two Divisional Network DEA Approach," Energies, MDPI, vol. 13(13), pages 1-17, June.
    17. Tang, Liwei & He, Gang, 2021. "How to improve total factor energy efficiency? An empirical analysis of the Yangtze River economic belt of China," Energy, Elsevier, vol. 235(C).
    18. Zhu, Ning & Streimikis, Justas & Yu, Zhiqian & Balezentis, Tomas, 2023. "Energy-sustainable agriculture in the European Union member states: Overall productivity growth and structural efficiency," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    19. Wen-Min Lu & Qian Long Kweh & Chung-Wei Wang, 2021. "Integration and application of rough sets and data envelopment analysis for assessments of the investment trusts industry," Annals of Operations Research, Springer, vol. 296(1), pages 163-194, January.
    20. Emrah Kocak & Hayriye Hilal Baglitas, 2022. "The path to sustainable municipal solid waste management: Do human development, energy efficiency, and income inequality matter?," Sustainable Development, John Wiley & Sons, Ltd., vol. 30(6), pages 1947-1962, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:6084-:d:1113321. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.