IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i7p5749-d1107185.html
   My bibliography  Save this article

Improving Autonomous Vehicle Controls and Quality Using Natural Language Processing-Based Input Recognition Model

Author

Listed:
  • Mohd Anjum

    (Department of Computer Engineering, Aligarh Muslim University, Aligarh 202002, India)

  • Sana Shahab

    (Department of Business Administration, College of Business Administration, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia)

Abstract

In contemporary development, autonomous vehicles (AVs) have emerged as a potential solution for sustainable and smart transportation to fulfill the increasing mobility demands whilst alleviating the negative impacts on society, the economy, and the environment. AVs completely depend on a machine to perform driving tasks. Therefore, their quality and safety are critical concerns for driving users. AVs use advanced driver assistance systems (ADASs) that heavily rely on sensors and camera data. These data are processed to execute vehicle control functions for autonomous driving. Furthermore, AVs have a voice communication system (VCS) to interact with driving users to accomplish different hand-free functions. Some functions such as navigation, climate control, media and entertainment, communication, vehicle settings, vehicle status, and emergency assistance have been successfully incorporated into AVs using VCSs. Several researchers have also implemented vehicle control functions using voice commands through VCSs. If a situation occurs when AV has lost control due to malfunctioning or fault in the installed computer, sensors and other associated modules, driving users can control the AV using voice notes to perform some driving tasks such as changing speeds, lanes, breaking, and directing the car to reach a safe condition. Furthermore, driving users need manual control over AV to perform these tasks in some situations, like lane changing or taking an exit due to divergence. These tasks can also be performed with the help of voice commands using VCSs. Therefore, finding the exact voice note used to instruct different actuators in risk situations is crucial. As a result, VCSs can greatly improve safety in critical situations where manual intervention is necessary. AVs’ functions and quality can be significantly increased by integrating a VCS with an ADAS and developing an interactive ADAS. Now, the driver functions are controlled by voice features. Therefore, natural language processing is utilized to extract the features to determine the user’s requirements. The extracted features control the vehicle functions and support driving activities. The existing techniques consume high computation while predicting the user command and causing a reduction in the AVs’ functions. This research issue is overcome by applying the variation continuous input recognition model. The proposed approach utilizes the linear training process that resolves the listening and time-constrained problems and uncertain response issues. The proposed model categorizes the inputs into non-trainable and trainable data, according to the data readiness and listening span. Then, the non-distinguishable data were validated by dividing it into the linear inputs used to improve the response in the AVs. Thus, effectively utilizing training parameters and the data decomposition process minimizes the uncertainty and increases the response rate. The proposed model has significantly improved the exact prediction of users’ voice notes and computation efficiency. This improvement enhances the VCS quality and reliability used to perform hand-free and vehicle control functions. The reliability of these functions ultimately improves the safety of AVs’ driving users and other road users.

Suggested Citation

  • Mohd Anjum & Sana Shahab, 2023. "Improving Autonomous Vehicle Controls and Quality Using Natural Language Processing-Based Input Recognition Model," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5749-:d:1107185
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/7/5749/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/7/5749/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Muhitur Rahman & Md Kamrul Islam & Ammar Al-Shayeb & Md Arifuzzaman, 2022. "Towards Sustainable Road Safety in Saudi Arabia: Exploring Traffic Accident Causes Associated with Driving Behavior Using a Bayesian Belief Network," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    2. Dahlen Silva & Dávid Földes & Csaba Csiszár, 2021. "Autonomous Vehicle Use and Urban Space Transformation: A Scenario Building and Analysing Method," Sustainability, MDPI, vol. 13(6), pages 1-22, March.
    3. Marcos Medina-Tapia & Francesc Robusté, 2019. "Implementation of Connected and Autonomous Vehicles in Cities Could Have Neutral Effects on the Total Travel Time Costs: Modeling and Analysis for a Circular City," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    4. Víctor Corcoba Magaña & Xabiel García Pañeda & Roberto Garcia & Sara Paiva & Laura Pozueco, 2021. "Beside and Behind the Wheel: Factors that Influence Driving Stress and Driving Behavior," Sustainability, MDPI, vol. 13(9), pages 1-17, April.
    5. Hazel Si Min Lim & Araz Taeihagh, 2018. "Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications," Energies, MDPI, vol. 11(5), pages 1-23, April.
    6. Francesco Filippi, 2022. "A Paradigm Shift for a Transition to Sustainable Urban Transport," Sustainability, MDPI, vol. 14(5), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    2. Shujaat Abbas & Hazrat Yousaf & Shabeer Khan & Mohd Ziaur Rehman & Dmitri Blueschke, 2023. "Analysis and Projection of Transport Sector Demand for Energy and Carbon Emission: An Application of the Grey Model in Pakistan," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    3. Foroughi, Behzad & Nhan, Pham Viet & Iranmanesh, Mohammad & Ghobakhloo, Morteza & Nilashi, Mehrbakhsh & Yadegaridehkordi, Elaheh, 2023. "Determinants of intention to use autonomous vehicles: Findings from PLS-SEM and ANFIS," Journal of Retailing and Consumer Services, Elsevier, vol. 70(C).
    4. Tania Leiman, 2021. "Law and tech collide: foreseeability, reasonableness and advanced driver assistance systems [Advanced Driver Assistance Systems (ADAS): A consideration of driver perceptions on training, usage & im," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(2), pages 250-271.
    5. Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
    6. Darcin Akin & Virginia P. Sisiopiku & Ali H. Alateah & Ali O. Almonbhi & Mohammed M. H. Al-Tholaia & Khaled A. Alawi Al-Sodani, 2022. "Identifying Causes of Traffic Crashes Associated with Driver Behavior Using Supervised Machine Learning Methods: Case of Highway 15 in Saudi Arabia," Sustainability, MDPI, vol. 14(24), pages 1-36, December.
    7. Wojciech Paprocki, 2021. "Virtual Airport Hub—A New Business Model to Reduce GHG Emissions in Continental Air Transport," Sustainability, MDPI, vol. 13(9), pages 1-19, April.
    8. Zhenwei Wang & Xiaochun Wang & Zijin Dong & Lisan Li & Wangjun Li & Shicheng Li, 2023. "More Urban Elderly Care Facilities Should Be Placed in Densely Populated Areas for an Aging Wuhan of China," Land, MDPI, vol. 12(1), pages 1-13, January.
    9. Ieva Meidute-Kavaliauskiene & Bülent Yıldız & Şemsettin Çiğdem & Renata Činčikaitė, 2021. "Do People Prefer Cars That People Don’t Drive? A Survey Study on Autonomous Vehicles," Energies, MDPI, vol. 14(16), pages 1-21, August.
    10. You Kong & Jihong Ou & Longfei Chen & Fengchun Yang & Bo Yu, 2023. "The Environmental Impacts of Automated Vehicles on Parking: A Systematic Review," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    11. Paulo Antonio Maldonado Silveira Alonso Munhoz & Fabricio da Costa Dias & Christine Kowal Chinelli & André Luis Azevedo Guedes & João Alberto Neves dos Santos & Wainer da Silveira e Silva & Carlos Alb, 2020. "Smart Mobility: The Main Drivers for Increasing the Intelligence of Urban Mobility," Sustainability, MDPI, vol. 12(24), pages 1-25, December.
    12. Lee, Dasom & Hess, David J., 2020. "Regulations for on-road testing of connected and automated vehicles: Assessing the potential for global safety harmonization," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 85-98.
    13. Mohd Anjum & Sana Shahab, 2023. "Emergency Vehicle Driving Assistance System Using Recurrent Neural Network with Navigational Data Processing Method," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
    14. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 2020. "A systematic literature review of the factors influencing the adoption of autonomous driving," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1065-1082, December.
    15. Bing Xia & Yichen Ruan, 2022. "Function Replacement Decision-Making for Parking Space Renewal Based on Association Rules Mining," Land, MDPI, vol. 11(2), pages 1-23, January.
    16. Vytautas Palevičius & Rasa Ušpalytė-Vitkūnienė & Jonas Damidavičius & Tomas Karpavičius, 2020. "Concepts of Development of Alternative Travel in Autonomous Cars," Sustainability, MDPI, vol. 12(21), pages 1-13, October.
    17. Khondoker Billah & Hatim O. Sharif & Samer Dessouky, 2022. "How Gender Affects Motor Vehicle Crashes: A Case Study from San Antonio, Texas," Sustainability, MDPI, vol. 14(12), pages 1-21, June.
    18. Sang-Jun Park & Ju-Hyung Kim & Min-Jung Maing & Jin-Ho Ahn & Yang-Gil Kim & Nam-Hyuk Ham & Jae-Jun Kim, 2023. "Transformation of Buildings and Urban Spaces to Adapt for Future Mobility: A Systematic Literature Review," Land, MDPI, vol. 13(1), pages 1-27, December.
    19. Pier Giuseppe Anselma, 2021. "Optimization-Driven Powertrain-Oriented Adaptive Cruise Control to Improve Energy Saving and Passenger Comfort," Energies, MDPI, vol. 14(10), pages 1-28, May.
    20. Sarri, Paraskevi & Kaparias, Ioannis & Preston, John & Simmonds, David, 2023. "Using Land Use and Transportation Interaction (LUTI) models to determine land use effects from new vehicle transportation technologies; a regional scale of analysis," Transport Policy, Elsevier, vol. 135(C), pages 91-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:7:p:5749-:d:1107185. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.