IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i20p5791-d278030.html
   My bibliography  Save this article

Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities

Author

Listed:
  • Hazel Si Min Lim

    (Lee Kuan Yew School of Public Policy, National University of Singapore, 469B Bukit Timah Road, Li Ka Shing Building, Singapore 259771, Singapore)

  • Araz Taeihagh

    (Lee Kuan Yew School of Public Policy, National University of Singapore, 469B Bukit Timah Road, Li Ka Shing Building, Singapore 259771, Singapore)

Abstract

Autonomous Vehicles (AVs) are increasingly embraced around the world to advance smart mobility and more broadly, smart, and sustainable cities. Algorithms form the basis of decision-making in AVs, allowing them to perform driving tasks autonomously, efficiently, and more safely than human drivers and offering various economic, social, and environmental benefits. However, algorithmic decision-making in AVs can also introduce new issues that create new safety risks and perpetuate discrimination. We identify bias, ethics, and perverse incentives as key ethical issues in the AV algorithms’ decision-making that can create new safety risks and discriminatory outcomes. Technical issues in the AVs’ perception, decision-making and control algorithms, limitations of existing AV testing and verification methods, and cybersecurity vulnerabilities can also undermine the performance of the AV system. This article investigates the ethical and technical concerns surrounding algorithmic decision-making in AVs by exploring how driving decisions can perpetuate discrimination and create new safety risks for the public. We discuss steps taken to address these issues, highlight the existing research gaps and the need to mitigate these issues through the design of AV’s algorithms and of policies and regulations to fully realise AVs’ benefits for smart and sustainable cities.

Suggested Citation

  • Hazel Si Min Lim & Araz Taeihagh, 2019. "Algorithmic Decision-Making in AVs: Understanding Ethical and Technical Concerns for Smart Cities," Sustainability, MDPI, vol. 11(20), pages 1-28, October.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5791-:d:278030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/20/5791/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/20/5791/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Larissa R. Suzuki, 2017. "Smart Cities IoT: Enablers and Technology Road Map," Springer Optimization and Its Applications, in: Stamatina Th. Rassia & Panos M. Pardalos (ed.), Smart City Networks, pages 167-190, Springer.
    2. Changjie Zhan & Martin De Jong & Hans De Bruijn, 2018. "Funding Sustainable Cities: A Comparative Study of Sino-Singapore Tianjin Eco-City and Shenzhen International Low-Carbon City," Sustainability, MDPI, vol. 10(11), pages 1-15, November.
    3. repec:aph:ajpbhl:10.2105/ajph.2016.303628_6 is not listed on IDEAS
    4. Anastasiadou, K. & Vougias, S., 2019. "“Smart” or “sustainably smart” urban road networks? The most important commercial street in Thessaloniki as a case study," Transport Policy, Elsevier, vol. 82(C), pages 18-25.
    5. Kummitha, Rama Krishna Reddy & Crutzen, Nathalie, 2019. "Smart cities and the citizen-driven internet of things: A qualitative inquiry into an emerging smart city," Technological Forecasting and Social Change, Elsevier, vol. 140(C), pages 44-53.
    6. Kfir Noy & Moshe Givoni, 2018. "Is ‘Smart Mobility’ Sustainable? Examining the Views and Beliefs of Transport’s Technological Entrepreneurs," Sustainability, MDPI, vol. 10(2), pages 1-19, February.
    7. Li, Shunxi & Sui, Pang-Chieh & Xiao, Jinsheng & Chahine, Richard, 2019. "Policy formulation for highly automated vehicles: Emerging importance, research frontiers and insights," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 573-586.
    8. Cohen, Scott A. & Hopkins, Debbie, 2019. "Autonomous vehicles and the future of urban tourism," Annals of Tourism Research, Elsevier, vol. 74(C), pages 33-42.
    9. repec:aph:ajpbhl:10.2105/ajph.2017.303672_0 is not listed on IDEAS
    10. Goodall, N.J., 2017. "From trolleys to risk: Models for ethical autonomous driving," American Journal of Public Health, American Public Health Association, vol. 107(4), pages 496-496.
    11. Edwards, Lilian & Veale, Michael, 2017. "Slave to the Algorithm? Why a 'right to an explanation' is probably not the remedy you are looking for," LawArXiv 97upg, Center for Open Science.
    12. Docherty, Iain & Marsden, Greg & Anable, Jillian, 2018. "The governance of smart mobility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 115(C), pages 114-125.
    13. Araz Taeihagh & Hazel Si Min Lim, 2019. "Governing autonomous vehicles: emerging responses for safety, liability, privacy, cybersecurity, and industry risks," Transport Reviews, Taylor & Francis Journals, vol. 39(1), pages 103-128, January.
    14. Chuanyang Sun & Xin Zhang & Lihe Xi & Ying Tian, 2018. "Design of a Path-Tracking Steering Controller for Autonomous Vehicles," Energies, MDPI, vol. 11(6), pages 1-17, June.
    15. Carlo Pugnetti & Remo Schläpfer, 2018. "Customer Preferences and Implicit Tradeoffs in Accident Scenarios for Self-Driving Vehicle Algorithms," JRFM, MDPI, vol. 11(2), pages 1-13, June.
    16. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    17. Hazel Si Min Lim & Araz Taeihagh, 2018. "Autonomous Vehicles for Smart and Sustainable Cities: An In-Depth Exploration of Privacy and Cybersecurity Implications," Energies, MDPI, vol. 11(5), pages 1-23, April.
    18. Appio, Francesco Paolo & Lima, Marcos & Paroutis, Sotirios, 2019. "Understanding Smart Cities: Innovation ecosystems, technological advancements, and societal challenges," Technological Forecasting and Social Change, Elsevier, vol. 142(C), pages 1-14.
    19. Fleetwood, J., 2017. "Public health, ethics, and autonomous vehicles," American Journal of Public Health, American Public Health Association, vol. 107(4), pages 532-537.
    20. Fábio Duarte & Carlo Ratti, 2018. "The Impact of Autonomous Vehicles on Cities: A Review," Journal of Urban Technology, Taylor & Francis Journals, vol. 25(4), pages 3-18, October.
    21. Kalra, Nidhi & Paddock, Susan M., 2016. "Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 182-193.
    22. Tan Yigitcanlar & Md. Kamruzzaman, 2019. "Smart Cities and Mobility: Does the Smartness of Australian Cities Lead to Sustainable Commuting Patterns?," Journal of Urban Technology, Taylor & Francis Journals, vol. 26(2), pages 21-46, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ngoc Uyen Phuong Nguyen & Martin G. Moehrle, 2019. "Technological Drivers of Urban Innovation: A T-DNA Analysis Based on US Patent Data," Sustainability, MDPI, vol. 11(24), pages 1-26, December.
    2. Shadi Shayan & Ki Pyung Kim & Tony Ma & Tan Hai Dang Nguyen, 2020. "The First Two Decades of Smart City Research from a Risk Perspective," Sustainability, MDPI, vol. 12(21), pages 1-20, November.
    3. Konstantina Anastasiadou, 2021. "Sustainable Mobility Driven Prioritization of New Vehicle Technologies, Based on a New Decision-Aiding Methodology," Sustainability, MDPI, vol. 13(9), pages 1-27, April.
    4. Araz Taeihagh, 2021. "Governance of artificial intelligence [Application of artificial intelligence for development of intelligent transport system in smart cities]," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(2), pages 137-157.
    5. Junyi Wu & Shari Shang, 2020. "Managing Uncertainty in AI-Enabled Decision Making and Achieving Sustainability," Sustainability, MDPI, vol. 12(21), pages 1-17, October.
    6. Fabiana Di Porto & Marialuisa Zuppetta, 2021. "Co-regulating algorithmic disclosure for digital platforms [Theorizing regulatory intermediaries]," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(2), pages 272-293.
    7. Julien Mercille, 2021. "Inclusive Smart Cities: Beyond Voluntary Corporate Data Sharing," Sustainability, MDPI, vol. 13(15), pages 1-13, July.
    8. Feipeng Wang & Diana Filipa Araújo & Yan-Fu Li, 2023. "Reliability assessment of autonomous vehicles based on the safety control structure," Journal of Risk and Reliability, , vol. 237(2), pages 389-404, April.
    9. Inga Ulnicane & William Knight & Tonii Leach & Bernd Carsten Stahl & Winter-Gladys Wanjiku, 2021. "Framing governance for a contested emerging technology:insights from AI policy [The next space race is Artificial Intelligence]," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(2), pages 158-177.
    10. Tania Leiman, 2021. "Law and tech collide: foreseeability, reasonableness and advanced driver assistance systems [Advanced Driver Assistance Systems (ADAS): A consideration of driver perceptions on training, usage & im," Policy and Society, Darryl S. Jarvis and M. Ramesh, vol. 40(2), pages 250-271.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 0. "Review and analysis of the importance of autonomous vehicles liability: a systematic literature review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-23.
    2. Mohamed Alawadhi & Jumah Almazrouie & Mohammed Kamil & Khalil Abdelrazek Khalil, 2020. "Review and analysis of the importance of autonomous vehicles liability: a systematic literature review," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(6), pages 1227-1249, December.
    3. Paulo Antonio Maldonado Silveira Alonso Munhoz & Fabricio da Costa Dias & Christine Kowal Chinelli & André Luis Azevedo Guedes & João Alberto Neves dos Santos & Wainer da Silveira e Silva & Carlos Alb, 2020. "Smart Mobility: The Main Drivers for Increasing the Intelligence of Urban Mobility," Sustainability, MDPI, vol. 12(24), pages 1-25, December.
    4. Tanja Manders & Elke Klaassen, 2019. "Unpacking the Smart Mobility Concept in the Dutch Context Based on a Text Mining Approach," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    5. Marchesani, Filippo & Masciarelli, Francesca & Bikfalvi, Andrea, 2023. "Smart city as a hub for talent and innovative companies: Exploring the (dis) advantages of digital technology implementation in cities," Technological Forecasting and Social Change, Elsevier, vol. 193(C).
    6. Kassens-Noor, Eva & Dake, Dana & Decaminada, Travis & Kotval-K, Zeenat & Qu, Teresa & Wilson, Mark & Pentland, Brian, 2020. "Sociomobility of the 21st century: Autonomous vehicles, planning, and the future city," Transport Policy, Elsevier, vol. 99(C), pages 329-335.
    7. Mora, Luca & Gerli, Paolo & Ardito, Lorenzo & Messeni Petruzzelli, Antonio, 2023. "Smart city governance from an innovation management perspective: Theoretical framing, review of current practices, and future research agenda," Technovation, Elsevier, vol. 123(C).
    8. Bundgaard, Lasse & Borrás, Susana, 2021. "City-wide scale-up of smart city pilot projects: Governance conditions," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    9. Filippo Corsini & Rafael Laurenti & Franziska Meinherz & Francesco Paolo Appio & Luca Mora, 2019. "The Advent of Practice Theories in Research on Sustainable Consumption: Past, Current and Future Directions of the Field," Sustainability, MDPI, vol. 11(2), pages 1-19, January.
    10. Maria Vincenza Ciasullo & Orlando Troisi & Mara Grimaldi & Daniele Leone, 2020. "Multi-level governance for sustainable innovation in smart communities: an ecosystems approach," International Entrepreneurship and Management Journal, Springer, vol. 16(4), pages 1167-1195, December.
    11. Xiaoran Zheng & Yuzhuo Cai, 2022. "Transforming Innovation Systems into Innovation Ecosystems: The Role of Public Policy," Sustainability, MDPI, vol. 14(12), pages 1-26, June.
    12. Bo Zou & Pooria Choobchian & Julie Rozenberg, 2021. "Cyber resilience of autonomous mobility systems: cyber-attacks and resilience-enhancing strategies," Journal of Transportation Security, Springer, vol. 14(3), pages 137-155, December.
    13. Shami, Mohammad Reza & Rad, Vahid Bigdeli & Moinifar, Maryam, 2022. "The structural model of indicators for evaluating the quality of urban smart living," Technological Forecasting and Social Change, Elsevier, vol. 176(C).
    14. Sebastian Kussl & Andreas Wald, 2022. "Smart Mobility and its Implications for Road Infrastructure Provision: A Systematic Literature Review," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    15. Devon McAslan & Farah Najar Arevalo & David A. King & Thaddeus R. Miller, 2021. "Pilot project purgatory? Assessing automated vehicle pilot projects in U.S. cities," Palgrave Communications, Palgrave Macmillan, vol. 8(1), pages 1-16, December.
    16. Liliana Andrei & Oana Luca & Florian Gaman, 2022. "Insights from User Preferences on Automated Vehicles: Influence of Socio-Demographic Factors on Value of Time in Romania Case," Sustainability, MDPI, vol. 14(17), pages 1-22, August.
    17. Anthea van der Hoogen & Ifeoluwapo Fashoro & Andre P. Calitz & Lamla Luke, 2024. "A Digital Transformation Framework for Smart Municipalities," Sustainability, MDPI, vol. 16(3), pages 1-28, February.
    18. Caprotti, Federico & Liu, Dong, 2020. "Emerging platform urbanism in China: Reconfigurations of data, citizenship and materialities," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Liu, Weihua & Wang, Siyu & Lin, Yong & Xie, Dong & Zhang, Jiahui, 2020. "Effect of intelligent logistics policy on shareholder value: Evidence from Chinese logistics companies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
    20. Kajikawa, Yuya & Mejia, Cristian & Wu, Mengjia & Zhang, Yi, 2022. "Academic landscape of Technological Forecasting and Social Change through citation network and topic analyses," Technological Forecasting and Social Change, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:20:p:5791-:d:278030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.