IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i5p4493-d1086032.html
   My bibliography  Save this article

A Robust Model Predictive Control for a Photovoltaic Pumping System Subject to Actuator Saturation Nonlinearity

Author

Listed:
  • Omar Hazil

    (Centre de Développement des Energies Renouvelables, Algiers 16340, Algeria)

  • Fouad Allouani

    (Laboratory of SATIT, Department of Industrial Engineering, Abbes Laghrour University, Khenchela 40004, Algeria)

  • Sofiane Bououden

    (Laboratory of SATIT, Department of Industrial Engineering, Abbes Laghrour University, Khenchela 40004, Algeria)

  • Mohammed Chadli

    (IBISC, Université Paris-Saclay, Univ Evry, 91020 Evry, France)

  • Mohamed Chemachema

    (Department of Electronics, Faculty of Technology, University of Constantine 1, Campus A. Hamani, Route Ain El Bey, Constantine 25017, Algeria)

  • Ilyes Boulkaibet

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

  • Bilel Neji

    (College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait)

Abstract

In this paper, a new robust model predictive control (RMPC) for uncertain nonlinear systems subject to actuator saturation is designed to regulate the terminal voltage of a photovoltaic generator (PVG) that feeds a DC motor-pump via a buck DC–DC converter. The considered system is a combination of a PVG-converter and DC motor-pump, which possesses nonlinear behavior along with under a saturating control signal highly dependent on the operation point and climate conditions of solar radiation and temperature. As a result, the control task is complex due to the nonlinearity of the system and its dependence on climate conditions. Based on the dead-zone property, the presented paper introduces a new RMPC technique to provide an innovative and efficient solution to ensure the closed-loop system’s robust stability in the presence of actuator nonlinearity. In this paper, the nonlinear system is described in polytypic form, and an appropriate linear feedback control law is designed and used to minimize an infinite horizon cost function under the framework of linear matrix inequalities (LMIs). Furthermore, sufficient state-feedback control law conditions are synthesized to guarantee the robust stability of the closed-loop system in the presence of polytypic uncertainties. Simulation results are provided, in which the results illustrate the effectiveness of the proposed method.

Suggested Citation

  • Omar Hazil & Fouad Allouani & Sofiane Bououden & Mohammed Chadli & Mohamed Chemachema & Ilyes Boulkaibet & Bilel Neji, 2023. "A Robust Model Predictive Control for a Photovoltaic Pumping System Subject to Actuator Saturation Nonlinearity," Sustainability, MDPI, vol. 15(5), pages 1-26, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4493-:d:1086032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/5/4493/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/5/4493/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ren, Fang-rong & Tian, Ze & Liu, Jingjing & Shen, Yu-ting, 2020. "Analysis of CO2 emission reduction contribution and efficiency of China’s solar photovoltaic industry: Based on Input-output perspective," Energy, Elsevier, vol. 199(C).
    2. Li, Xingshuo & Wen, Huiqing & Hu, Yihua & Jiang, Lin, 2019. "A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application," Renewable Energy, Elsevier, vol. 130(C), pages 416-427.
    3. Sofiane Bououden & Fouad Allouani & Abdelaziz Abboudi & Mohammed Chadli & Ilyes Boulkaibet & Zaher Al Barakeh & Bilel Neji & Raymond Ghandour, 2023. "Observer-Based Robust Fault Predictive Control for Wind Turbine Time-Delay Systems with Sensor and Actuator Faults," Energies, MDPI, vol. 16(2), pages 1-21, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ángel Adrián Orta-Quintana & Rogelio Ernesto García-Chávez & Ramón Silva-Ortigoza & Magdalena Marciano-Melchor & Miguel Gabriel Villarreal-Cervantes & José Rafael García-Sánchez & Rocío García-Cortés , 2023. "Sensorless Tracking Control Based on Sliding Mode for the “Full-Bridge Buck Inverter–DC Motor” System Fed by PV Panel," Sustainability, MDPI, vol. 15(13), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Xinyu Zhang & Mufei Shen & Yupeng Luan & Weijia Cui & Xueqin Lin, 2022. "Spatial Evolutionary Characteristics and Influencing Factors of Urban Industrial Carbon Emission in China," IJERPH, MDPI, vol. 19(18), pages 1-21, September.
    3. Chen, Feng & Wu, Bin & Lou, Wenqian, 2021. "An evolutionary analysis on the effect of government policies on green R & D of photovoltaic industry diffusion in complex network," Energy Policy, Elsevier, vol. 152(C).
    4. Moacyr A. G. de Brito & Victor A. Prado & Edson A. Batista & Marcos G. Alves & Carlos A. Canesin, 2021. "Design Procedure to Convert a Maximum Power Point Tracking Algorithm into a Loop Control System," Energies, MDPI, vol. 14(15), pages 1-17, July.
    5. Gao, Fang & Hu, Rongzhao & Yin, Linfei, 2023. "Variable boundary reinforcement learning for maximum power point tracking of photovoltaic grid-connected systems," Energy, Elsevier, vol. 264(C).
    6. Kuşkaya, Sevda, 2022. "Residential solar energy consumption and greenhouse gas nexus: Evidence from Morlet wavelet transforms," Renewable Energy, Elsevier, vol. 192(C), pages 793-804.
    7. Baldwin Cortés & Roberto Tapia & Juan J. Flores, 2021. "System-Independent Irradiance Sensorless ANN-Based MPPT for Photovoltaic Systems in Electric Vehicles," Energies, MDPI, vol. 14(16), pages 1-18, August.
    8. Shaowu Li & Kunyi Chen & Qin Li & Qing Ai, 2022. "A Variable-Weather-Parameter MPPT Method Based on Equation Solution for Photovoltaic System with DC Bus," Energies, MDPI, vol. 15(18), pages 1-25, September.
    9. Hsen Abidi & Lilia Sidhom & Ines Chihi, 2023. "Systematic Literature Review and Benchmarking for Photovoltaic MPPT Techniques," Energies, MDPI, vol. 16(8), pages 1-45, April.
    10. Guo, Xiaopeng & Dong, Yining & Ren, Dongfang, 2023. "CO2 emission reduction effect of photovoltaic industry through 2060 in China," Energy, Elsevier, vol. 269(C).
    11. Dalia Yousri & Thanikanti Sudhakar Babu & Dalia Allam & Vigna. K. Ramachandaramurthy & Eman Beshr & Magdy. B. Eteiba, 2019. "Fractional Chaos Maps with Flower Pollination Algorithm for Partial Shading Mitigation of Photovoltaic Systems," Energies, MDPI, vol. 12(18), pages 1-27, September.
    12. Liangen Zeng, 2022. "The Driving Mechanism of Urban Land Green Use Efficiency in China Based on the EBM Model with Undesirable Outputs and the Spatial Dubin Model," IJERPH, MDPI, vol. 19(17), pages 1-20, August.
    13. Acosta-Pazmiño, Iván P. & Rivera-Solorio, C.I. & Gijón-Rivera, M., 2021. "Scaling-up the installation of hybrid solar collectors to reduce CO2 emissions in a Mexican industrial sector from now to 2030," Applied Energy, Elsevier, vol. 298(C).
    14. June Raymond Leonen Mariano & Mingyu Liao & Herchang Ay, 2021. "Performance Evaluation of Solar PV Power Plants in Taiwan Using Data Envelopment Analysis," Energies, MDPI, vol. 14(15), pages 1-14, July.
    15. Vincenzo Stornelli & Mirco Muttillo & Tullio de Rubeis & Iole Nardi, 2019. "A New Simplified Five-Parameter Estimation Method for Single-Diode Model of Photovoltaic Panels," Energies, MDPI, vol. 12(22), pages 1-20, November.
    16. Jiang, Hou & Lu, Ning & Qin, Jun & Yao, Ling, 2021. "Hierarchical identification of solar radiation zones in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Tatsuya Hinokuma & Hooman Farzaneh & Ayas Shaqour, 2021. "Techno-Economic Analysis of a Fuzzy Logic Control Based Hybrid Renewable Energy System to Power a University Campus in Japan," Energies, MDPI, vol. 14(7), pages 1-23, April.
    18. Yizhi Chen & Dingyi Lin & Fei Xu & Xingshuo Li & Wei Wang & Shuye Ding, 2023. "Research on Q-Table Design for Maximum Power Point Tracking-Based Reinforcement Learning in PV Systems," Energies, MDPI, vol. 16(21), pages 1-16, October.
    19. Wang, Jian-jun & Deng, Yu-cong & Sun, Wen-biao & Zheng, Xiao-bin & Cui, Zheng, 2023. "Maximum power point tracking method based on impedance matching for a micro hydropower generator," Applied Energy, Elsevier, vol. 340(C).
    20. Piotr Olczak & Małgorzata Olek & Dominika Matuszewska & Artur Dyczko & Tomasz Mania, 2021. "Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland," Energies, MDPI, vol. 14(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:5:p:4493-:d:1086032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.