IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p3525-d1068480.html
   My bibliography  Save this article

Evaluation of Railway Station Infrastructure to Facilitate Bike–Train Intermodality

Author

Listed:
  • Margherita Pazzini

    (Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, 40131 Bologna, Italy)

  • Claudio Lantieri

    (Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, 40131 Bologna, Italy)

  • Annalisa Zoli

    (Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, 40131 Bologna, Italy)

  • Andrea Simone

    (Department of Civil, Chemical, Environmental, and Materials Engineering (DICAM), University of Bologna, 40131 Bologna, Italy)

  • Hocine Imine

    (Laboratoire sur la Perception, les Interactions, les Comportements et la Simulation des Usagers de la Route et de la Rue (PICS-L), Components and Systems Department (cosys), Gustave Eiffel University, 77420 Champs sur Marne, France)

Abstract

In recent years, emissions into the atmosphere have been brought to the attention of the authorities and some action has been taken to try to solve the problem. One is the application of EU legislation 2008/50/EC, which requires states adhering to this law to constantly monitor air quality and subsequently find solutions to reduce the impact of emissions. The data show that 20% of emissions come from transport, 70% of which come from private vehicles. Sustainable mobility can be a possible solution to reduce pollution and traffic congestion. The promotion of cycling, as part of sustainable mobility, is a required action to achieve the objectives pursued. This research aims to define the quality of infrastructure and accessibility of railway stations to the use of bicycles. The approach used was to define a technical checklist to estimate the criticalities of the structure in a quantitative way. An example is the case study developed in the Emilia-Romagna region (Italy) within the PREPAIR project where 33 railway stations were classified and analyzed. In the end, the checklist was effective in defining the necessary interventions and the required activities and can be used in similar cases during the decision-making processes.

Suggested Citation

  • Margherita Pazzini & Claudio Lantieri & Annalisa Zoli & Andrea Simone & Hocine Imine, 2023. "Evaluation of Railway Station Infrastructure to Facilitate Bike–Train Intermodality," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3525-:d:1068480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/3525/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/3525/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roberto Battistini & Fabrizio Passarini & Rita Marrollo & Claudio Lantieri & Andrea Simone & Valeria Vignali, 2022. "How to Assess the Carbon Footprint of a Large University? The Case Study of University of Bologna’s Multicampus Organization," Energies, MDPI, vol. 16(1), pages 1-22, December.
    2. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    3. Daniel Bell, 2019. "Intermodal Mobility Hubs and User Needs," Social Sciences, MDPI, vol. 8(2), pages 1-9, February.
    4. Mateo-Babiano, Iderlina & Bean, Richard & Corcoran, Jonathan & Pojani, Dorina, 2016. "How does our natural and built environment affect the use of bicycle sharing?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 295-307.
    5. John Parkin & Mark Wardman & Matthew Page, 2008. "Estimation of the determinants of bicycle mode share for the journey to work using census data," Transportation, Springer, vol. 35(1), pages 93-109, January.
    6. Weliwitiya, Hesara & Rose, Geoffrey & Johnson, Marilyn, 2019. "Bicycle train intermodality: Effects of demography, station characteristics and the built environment," Journal of Transport Geography, Elsevier, vol. 74(C), pages 395-404.
    7. Rietveld, Piet & Daniel, Vanessa, 2004. "Determinants of bicycle use: do municipal policies matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 531-550, August.
    8. Cervero, Robert & Round, Alfred & Goldman, Todd & Wu, Kang-Li, 1995. "Rail Access Modes and Catchment Areas for the BART System," University of California Transportation Center, Working Papers qt07k76097, University of California Transportation Center.
    9. Tiziana Campisi & Nurten Akgün & Dario Ticali & Giovanni Tesoriere, 2020. "Exploring Public Opinion on Personal Mobility Vehicle Use: A Case Study in Palermo, Italy," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Weibo & Kamargianni, Maria, 2018. "Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 277-291.
    2. Tyndall, Justin, 2022. "Complementarity of dockless mircomobility and rail transit," Journal of Transport Geography, Elsevier, vol. 103(C).
    3. Shukui Tan & Yi Zhao & Wenke Huang, 2019. "Neighborhood Social Disadvantage and Bicycling Behavior: A Big Data-Spatial Approach Based on Social Indicators," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 145(3), pages 985-999, October.
    4. Downward, Paul & Rasciute, Simona, 2015. "Assessing the impact of the National Cycle Network and physical activity lifestyle on cycling behaviour in England," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 425-437.
    5. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    6. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    7. Vandenbulcke, Grégory & Dujardin, Claire & Thomas, Isabelle & Geus, Bas de & Degraeuwe, Bart & Meeusen, Romain & Panis, Luc Int, 2011. "Cycle commuting in Belgium: Spatial determinants and 're-cycling' strategies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(2), pages 118-137, February.
    8. Götschi, Thomas & Hintermann, Beat, 2013. "Valuation of public investment to support bicycling (FV-09)," Working papers 2013/02, Faculty of Business and Economics - University of Basel.
    9. An, Ran & Zahnow, Renee & Pojani, Dorina & Corcoran, Jonathan, 2019. "Weather and cycling in New York: The case of Citibike," Journal of Transport Geography, Elsevier, vol. 77(C), pages 97-112.
    10. Hong, Jinhyun & Philip McArthur, David & Stewart, Joanna L., 2020. "Can providing safe cycling infrastructure encourage people to cycle more when it rains? The use of crowdsourced cycling data (Strava)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 133(C), pages 109-121.
    11. Spencer, Phoebe & Watts, Richard & Vivanco, Luis & Flynn, Brian, 2013. "The effect of environmental factors on bicycle commuters in Vermont: influences of a northern climate," Journal of Transport Geography, Elsevier, vol. 31(C), pages 11-17.
    12. Vandenbulcke, Grégory & Thomas, Isabelle & de Geus, Bas & Degraeuwe, Bart & Torfs, Rudi & Meeusen, Romain & Int Panis, Luc, 2009. "Mapping bicycle use and the risk of accidents for commuters who cycle to work in Belgium," Transport Policy, Elsevier, vol. 16(2), pages 77-87, March.
    13. Umer Mansoor & Mohammad Tamim Kashifi & Fazal Rehman Safi & Syed Masiur Rahman, 2022. "A review of factors and benefits of non-motorized transport: a way forward for developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 1560-1582, February.
    14. Osama, Ahmed & Sayed, Tarek & Bigazzi, Alexander Y., 2017. "Models for estimating zone-level bike kilometers traveled using bike network, land use, and road facility variables," Transportation Research Part A: Policy and Practice, Elsevier, vol. 96(C), pages 14-28.
    15. Lopes, Miguel & Mélice Dias, Ana & Silva, Cecília, 2021. "The impact of urban features in cycling potential – A tale of Portuguese cities," Journal of Transport Geography, Elsevier, vol. 95(C).
    16. Senes, Giulio & Rovelli, Roberto & Bertoni, Danilo & Arata, Laura & Fumagalli, Natalia & Toccolini, Alessandro, 2017. "Factors influencing greenways use: Definition of a method for estimation in the Italian context," Journal of Transport Geography, Elsevier, vol. 65(C), pages 175-187.
    17. Ruiz, Tomás & Bernabé, José C., 2014. "Measuring factors influencing valuation of nonmotorized improvement measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 67(C), pages 195-211.
    18. Lanzendorf, Martin & Busch-Geertsema, Annika, 2014. "The cycling boom in large German cities—Empirical evidence for successful cycling campaigns," Transport Policy, Elsevier, vol. 36(C), pages 26-33.
    19. Frondel, Manuel & Vance, Colin, 2017. "Cycling on the extensive and intensive margin: The role of paths and prices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 104(C), pages 21-31.
    20. Nkurunziza, Alphonse & Zuidgeest, Mark & Brussel, Mark & Van Maarseveen, Martin, 2012. "Examining the potential for modal change: Motivators and barriers for bicycle commuting in Dar-es-Salaam," Transport Policy, Elsevier, vol. 24(C), pages 249-259.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:3525-:d:1068480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.