IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v111y2018icp277-291.html
   My bibliography  Save this article

Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China

Author

Listed:
  • Li, Weibo
  • Kamargianni, Maria

Abstract

Developing countries are facing increasing challenges to make urban mobility sustainable and to tackle the continuously growing air pollution and congestion caused by the rapid increase in car ownership. As part of a broad strategy to achieve sustainable urban mobility, bike-sharing services could contribute to car usage decrease, especially for short-distance trips. However, most of the developing countries have limited quantified evidence regarding the factors affecting bike-sharing choice and this hinders policy makers from effectively promoting bike-sharing usage. The case study city is Taiyuan, which operates one of the most in demand bike-sharing schemes in China. This research investigates the factors affecting mode choice behavior with a focus on bike-sharing, and explores the effectiveness of different policy options aiming at increasing bike-sharing ridership. Nested logit and mixed nested logit models are developed using both stated preference and revealed preference data. Policy effectiveness is studied by examining modal split changes. The results reveal the significant negative impact of air pollution on bike-sharing choice. Nevertheless, improving air quality is found to be less effective in promoting bike-sharing ridership than improving bike-sharing service itself (e.g. through access time saving, travel cost saving); although it is more effective in suppressing private car usage.

Suggested Citation

  • Li, Weibo & Kamargianni, Maria, 2018. "Providing quantified evidence to policy makers for promoting bike-sharing in heavily air-polluted cities: A mode choice model and policy simulation for Taiyuan-China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 277-291.
  • Handle: RePEc:eee:transa:v:111:y:2018:i:c:p:277-291
    DOI: 10.1016/j.tra.2018.01.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856417301003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2018.01.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Parkin & Mark Wardman & Matthew Page, 2008. "Estimation of the determinants of bicycle mode share for the journey to work using census data," Transportation, Springer, vol. 35(1), pages 93-109, January.
    2. Kamargianni, Maria, 2015. "Investigating next generation's cycling ridership to promote sustainable mobility in different types of cities," Research in Transportation Economics, Elsevier, vol. 53(C), pages 45-55.
    3. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    4. Lin, Jenn-Rong & Yang, Ta-Hui, 2011. "Strategic design of public bicycle sharing systems with service level constraints," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(2), pages 284-294, March.
    5. Salomon, Ilan & Mokhtarian, Patricia, 1998. "What Happens When Mobility-Inclined Market Segments Face Accessibility-Enhancing Policies?," Institute of Transportation Studies, Working Paper Series qt2x75525j, Institute of Transportation Studies, UC Davis.
    6. Bliemer, Michiel C.J. & Rose, John M. & Hensher, David A., 2009. "Efficient stated choice experiments for estimating nested logit models," Transportation Research Part B: Methodological, Elsevier, vol. 43(1), pages 19-35, January.
    7. Xing, Yan & Handy, Susan L. & Mokhtarian, Patricia L., 2010. "Factors Associated with Proportions and Miles of Bicycling for Transportation and Recreation in Six Small U.S. Cities," Institute of Transportation Studies, Working Paper Series qt74n4j1p0, Institute of Transportation Studies, UC Davis.
    8. Shaheen, Susan & Guzman, Stacey & Zhang, Hua, 2010. "Bikesharing in Europe, the Americas, and Asia: Past, Present, and Future," Institute of Transportation Studies, Working Paper Series qt79v822k5, Institute of Transportation Studies, UC Davis.
    9. Wang, Chih-Hao & Akar, Gulsah & Guldmann, Jean-Michel, 2015. "Do your neighbors affect your bicycling choice? A spatial probit model for bicycling to The Ohio State University," Journal of Transport Geography, Elsevier, vol. 42(C), pages 122-130.
    10. Caussade, Sebastián & Ortúzar, Juan de Dios & Rizzi, Luis I. & Hensher, David A., 2005. "Assessing the influence of design dimensions on stated choice experiment estimates," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 621-640, August.
    11. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    12. David Hensher & William Greene, 2003. "The Mixed Logit model: The state of practice," Transportation, Springer, vol. 30(2), pages 133-176, May.
    13. Elisabetta Cherchi & Juan de Dios Ortúzar, 2011. "On the Use of Mixed RP/SP Models in Prediction: Accounting for Systematic and Random Taste Heterogeneity," Transportation Science, INFORMS, vol. 45(1), pages 98-108, February.
    14. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    15. Rietveld, Piet & Daniel, Vanessa, 2004. "Determinants of bicycle use: do municipal policies matter?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 531-550, August.
    16. Maness, Michael & Cirillo, Cinzia & Dugundji, Elenna R., 2015. "Generalized behavioral framework for choice models of social influence: Behavioral and data concerns in travel behavior," Journal of Transport Geography, Elsevier, vol. 46(C), pages 137-150.
    17. Bhat, Chandra R. & Sardesai, Rupali, 2006. "The impact of stop-making and travel time reliability on commute mode choice," Transportation Research Part B: Methodological, Elsevier, vol. 40(9), pages 709-730, November.
    18. Fishman, Elliot & Washington, Simon & Haworth, Narelle & Watson, Angela, 2015. "Factors influencing bike share membership: An analysis of Melbourne and Brisbane," Transportation Research Part A: Policy and Practice, Elsevier, vol. 71(C), pages 17-30.
    19. Whalen, Kate E. & Páez, Antonio & Carrasco, Juan A., 2013. "Mode choice of university students commuting to school and the role of active travel," Journal of Transport Geography, Elsevier, vol. 31(C), pages 132-142.
    20. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    21. Deenihan, Gerard & Caulfield, Brian, 2015. "Do tourists value different levels of cycling infrastructure?," Tourism Management, Elsevier, vol. 46(C), pages 92-101.
    22. Francisco Amador & Rosa González & Juan Ortúzar, 2005. "Preference Heterogeneity and Willingness to Pay for Travel Time Savings," Transportation, Springer, vol. 32(6), pages 627-647, November.
    23. Mateo-Babiano, Iderlina & Bean, Richard & Corcoran, Jonathan & Pojani, Dorina, 2016. "How does our natural and built environment affect the use of bicycle sharing?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 295-307.
    24. Motoaki, Yutaka & Daziano, Ricardo A., 2015. "A hybrid-choice latent-class model for the analysis of the effects of weather on cycling demand," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 217-230.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weibo Li & Maria Kamargianni, 2020. "Steering short-term demand for car-sharing: a mode choice and policy impact analysis by trip distance," Transportation, Springer, vol. 47(5), pages 2233-2265, October.
    2. Bliemer, Michiel C.J. & Rose, John M., 2011. "Experimental design influences on stated choice outputs: An empirical study in air travel choice," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 63-79, January.
    3. Médard de Chardon, Cyrille & Caruso, Geoffrey & Thomas, Isabelle, 2017. "Bicycle sharing system ‘success’ determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 202-214.
    4. Jinyi Zhou & Changyuan Jing & Xiangjun Hong & Tian Wu, 2019. "Winter Sabotage: The Three-Way Interactive Effect of Gender, Age, and Season on Public Bikesharing Usage," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    5. Weibo Li & Maria Kamargianni, 2020. "An Integrated Choice and Latent Variable Model to Explore the Influence of Attitudinal and Perceptual Factors on Shared Mobility Choices and Their Value of Time Estimation," Transportation Science, INFORMS, vol. 54(1), pages 62-83, January.
    6. Ma, Xinwei & Zhang, Shuai & Wu, Tao & Yang, Yizhe & Yu, Jiajie, 2023. "Can dockless and docked bike-sharing substitute each other? Evidence from Nanjing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. De Ayala Bilbao, Amaya & Hoyos Ramos, David & Mariel Chladkova, Petr, 2012. "Landscape valuation through discrete choice experiments: Current practice and future research reflections," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    8. Stephane Hess & John Rose, 2012. "Can scale and coefficient heterogeneity be separated in random coefficients models?," Transportation, Springer, vol. 39(6), pages 1225-1239, November.
    9. Bliemer, Michiel C.J. & Rose, John M., 2013. "Confidence intervals of willingness-to-pay for random coefficient logit models," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 199-214.
    10. Bhat, Chandra R. & Astroza, Sebastian & Hamdi, Amin S., 2017. "A spatial generalized ordered-response model with skew normal kernel error terms with an application to bicycling frequency," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 126-148.
    11. Zhao, Pengjun & Li, Shengxiao, 2017. "Bicycle-metro integration in a growing city: The determinants of cycling as a transfer mode in metro station areas in Beijing," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 46-60.
    12. Zhao, De & Ong, Ghim Ping & Wang, Wei & Hu, Xiao Jian, 2019. "Effect of built environment on shared bicycle reallocation: A case study on Nanjing, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 128(C), pages 73-88.
    13. Dehdari Ebrahimi, Zhila & Momenitabar, Mohsen & Nasri, Arefeh A. & Mattson, Jeremy, 2022. "Using a GIS-based spatial approach to determine the optimal locations of bikeshare stations: The case of Washington D.C," Transport Policy, Elsevier, vol. 127(C), pages 48-60.
    14. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    15. Gu, Tianqi & Kim, Inhi & Currie, Graham, 2019. "To be or not to be dockless: Empirical analysis of dockless bikeshare development in China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 119(C), pages 122-147.
    16. Pucher, John & Buehler, Ralph & Seinen, Mark, 2011. "Bicycling renaissance in North America? An update and re-appraisal of cycling trends and policies," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(6), pages 451-475, July.
    17. Hossan, Md Sakoat & Asgari, Hamidreza & Jin, Xia, 2016. "Investigating preference heterogeneity in Value of Time (VOT) and Value of Reliability (VOR) estimation for managed lanes," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 638-649.
    18. Martínez-Pardo, Ana & Orro, Alfonso & Garcia-Alonso, Lorena, 2020. "Analysis of port choice: A methodological proposal adjusted with public data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 136(C), pages 178-193.
    19. Götschi, Thomas & Hintermann, Beat, 2013. "Valuation of public investment to support bicycling (FV-09)," Working papers 2013/02, Faculty of Business and Economics - University of Basel.
    20. Juan Carlos Martín & Concepción Román & Cira Mendoza, 2018. "Determinants for sun-and-beach self-catering accommodation selection," Tourism Economics, , vol. 24(3), pages 319-336, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:111:y:2018:i:c:p:277-291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.