IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1599-d1035222.html
   My bibliography  Save this article

Parameter Study of Financial Analysis for Implementing Solar Photovoltaics Structural Snow Fences

Author

Listed:
  • Namrata Bista

    (Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58104, USA)

  • Fangzheng Yuan

    (Upper Great Plains Transportation Institute, North Dakota State University, Fargo, ND 58104, USA)

  • Yao Yu

    (Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58104, USA)

  • Rui Miao

    (Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58104, USA)

  • Xiaoou Hu

    (Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58104, USA)

  • Mijia Yang

    (Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, ND 58104, USA)

Abstract

Structural snow fences are known as a cost-effective way to enhance road safety on highways, which, however, are only used during winter, making them “useless” during summer. To increase their cost-effectiveness, Photovoltaics Snow Fences (PVSF) were developed by integrating PV panels with conventional structural snow fences. As part of the feasibility study supported by the Minnesota Department of Transportation (MnDOT), a financial analysis was performed involving many parameters, such as the capital and operating costs of the PVSF system, installation orientation of the panels, discount rates, energy selling prices, availability of incentives, ownership of the PV system, etc. The effects of these parameters on the analysis results were evaluated, where critical (most sensitive) parameters were first identified, and then their quantitative effects on the analysis results were evaluated in terms of Net Present Value (NPV) and Internal Rate of Return (IRR). The results indicate that the real discount rate is the most sensitive parameter in determining the cost-effectiveness of a PVSF project in Minnesota by looking at its NPV, when the benefits, such as Federal Tax Credits, Renewable Energy Certificates, and those associated with the use of snow fences, are considered in the financial analysis. The cost of the PVSF system is the most sensitive parameter for IRR, depending on the ownership of the PV system (by MnDOT or via a Power Purchase Agreement).

Suggested Citation

  • Namrata Bista & Fangzheng Yuan & Yao Yu & Rui Miao & Xiaoou Hu & Mijia Yang, 2023. "Parameter Study of Financial Analysis for Implementing Solar Photovoltaics Structural Snow Fences," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1599-:d:1035222
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1599/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1599/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Poullikkas, Andreas, 2009. "Parametric cost-benefit analysis for the installation of photovoltaic parks in the island of Cyprus," Energy Policy, Elsevier, vol. 37(9), pages 3673-3680, September.
    2. Fthenakis, Vasilis M., 2000. "End-of-life management and recycling of PV modules," Energy Policy, Elsevier, vol. 28(14), pages 1051-1058, November.
    3. De Schepper, Ellen & Van Passel, Steven & Manca, Jean & Thewys, Theo, 2012. "Combining photovoltaics and sound barriers – A feasibility study," Renewable Energy, Elsevier, vol. 46(C), pages 297-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hernandez, R.R. & Easter, S.B. & Murphy-Mariscal, M.L. & Maestre, F.T. & Tavassoli, M. & Allen, E.B. & Barrows, C.W. & Belnap, J. & Ochoa-Hueso, R. & Ravi, S. & Allen, M.F., 2014. "Environmental impacts of utility-scale solar energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 766-779.
    2. Kang, Sukmin & Yoo, Sungyeol & Lee, Jina & Boo, Bonghyun & Ryu, Hojin, 2012. "Experimental investigations for recycling of silicon and glass from waste photovoltaic modules," Renewable Energy, Elsevier, vol. 47(C), pages 152-159.
    3. Anabela Botelho & Lina Sofia Lourenço-Gomes & Lígia Costa Pinto & Sara Sousa & Marieta Valente, 2016. "Accounting for local impacts of photovoltaic farms: two stated preferences approaches," NIMA Working Papers 64, Núcleo de Investigação em Microeconomia Aplicada (NIMA), Universidade do Minho.
    4. Alyami, Saleh. H. & Rezgui, Yacine & Kwan, Alan, 2013. "Developing sustainable building assessment scheme for Saudi Arabia: Delphi consultation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 43-54.
    5. Hui Fang Yu & Md. Hasanuzzaman & Nasrudin Abd Rahim & Norridah Amin & Noriah Nor Adzman, 2022. "Global Challenges and Prospects of Photovoltaic Materials Disposal and Recycling: A Comprehensive Review," Sustainability, MDPI, vol. 14(14), pages 1-41, July.
    6. Domínguez, Adriana & Geyer, Roland, 2019. "Photovoltaic waste assessment of major photovoltaic installations in the United States of America," Renewable Energy, Elsevier, vol. 133(C), pages 1188-1200.
    7. Chiemeka Onyeka Okoye & Serkan Abbasoglu, 2013. "Empirical Investigation of Fixed and Dual Axis Sun Tracking Photovoltaic System Installations in Turkish Republic of Northern Cyprus," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 3(5), pages 440-453, May.
    8. Dusonchet, L. & Telaretti, E., 2015. "Comparative economic analysis of support policies for solar PV in the most representative EU countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 986-998.
    9. Ahl, A. & Yarime, M. & Goto, M. & Chopra, Shauhrat S. & Kumar, Nallapaneni Manoj. & Tanaka, K. & Sagawa, D., 2020. "Exploring blockchain for the energy transition: Opportunities and challenges based on a case study in Japan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    10. Fthenakis, Vasilis M., 2004. "Life cycle impact analysis of cadmium in CdTe PV production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 303-334, August.
    11. Qiong Wu & Xiaofeng Zhang & Qi Wang, 2024. "Integrating Renewable Energy in Transportation: Challenges, Solutions, and Future Prospects on Photovoltaic Noise Barriers," Sustainability, MDPI, vol. 16(6), pages 1-19, March.
    12. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2018. "Opportunities and Challenges of Solar and Wind Energy in South Korea: A Review," Sustainability, MDPI, vol. 10(6), pages 1-23, June.
    13. Michael Redlinger & Roderick Eggert & Michael Woodhouse, 2014. "Evaluating the Availability of Gallium, Indium, and Tellurium from Recycled Photovoltaic Modules," Working Papers 2014-09, Colorado School of Mines, Division of Economics and Business.
    14. Klepacka, Anna M. & Florkowski, Wojciech J. & Wójcik, Katarzyna, 2018. "Issues of Country of Origin, Market Incentives, and Recycling in Opinions of Passive Solar Collector Owners," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 18(33, Part ), September.
    15. Poullikkas, Andreas & Kourtis, George & Hadjipaschalis, Ioannis, 2011. "A hybrid model for the optimum integration of renewable technologies in power generation systems," Energy Policy, Elsevier, vol. 39(2), pages 926-935, February.
    16. Ding, Ming & Xu, Zhicheng & Wang, Weisheng & Wang, Xiuli & Song, Yunting & Chen, Dezhi, 2016. "A review on China׳s large-scale PV integration: Progress, challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 639-652.
    17. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    18. Aleksandra Ziemińska-Stolarska & Monika Pietrzak & Ireneusz Zbiciński, 2021. "Application of LCA to Determine Environmental Impact of Concentrated Photovoltaic Solar Panels—State-of-the-Art," Energies, MDPI, vol. 14(11), pages 1-20, May.
    19. Said, Zafar & Arora, Sahil & Bellos, Evangelos, 2018. "A review on performance and environmental effects of conventional and nanofluid-based thermal photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 302-316.
    20. Bravi, Mirko & Parisi, Maria Laura & Tiezzi, Enzo & Basosi, Riccardo, 2011. "Life cycle assessment of a micromorph photovoltaic system," Energy, Elsevier, vol. 36(7), pages 4297-4306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1599-:d:1035222. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.