IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i24p16699-d1297030.html
   My bibliography  Save this article

Assessing Land Resource Carrying Capacity in China’s Main Grain-Producing Areas: Spatial–Temporal Evolution, Coupling Coordination, and Obstacle Factors

Author

Listed:
  • Bing Jiang

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China
    Development Research Center of Modern Agriculture, Northeast Agricultural University, Harbin 150030, China)

  • Wenjie Tang

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China)

  • Meijia Li

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China)

  • Guangchao Yang

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China)

  • Xiaoshang Deng

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China)

  • Lihang Cui

    (College of Economics and Management, Northeast Agricultural University, Harbin 150030, China)

Abstract

The land resources in the main grain-producing areas (MGPAs) provide a solid foundation for grain production, and promotion of the sustainable utilization of land resources in these areas is crucial for ensuring national food security. To comprehensively assess the land resource carrying capacity (LRCC) in China’s MGPAs, we utilized the driver-pressure-state-impact-response (DPSIR) framework and applied the analytic hierarchy process (AHP) and entropy weight (EW) method to analyze the spatial–temporal evolution of LRCC in China’s MGPAs from 2000 to 2020. By establishing a coupling coordination model, we explored the coupling coordination relationships among LRCC subsystems and identified key factors hindering the balanced development of LRCC using an obstacle degree model. The research results indicate that the LRCC in China’s MGPAs generally shows an increasing trend with a continuously growing rate, with the LRCC in the southern regions surpassing that in the northern regions. The overall coupling coordination of LRCC demonstrates an increasing trend, although the growth rate is decreasing. The coupling coordination level of LRCC in the southern regions is generally higher than that in the northern regions, and the gap in coordination levels between various regions is narrowing. The state and pressure subsystems significantly influence the balanced development of LRCC. Indicators such as arable land area per capita, grain production yield per unit area of arable land, grain production yield per capita, forest land area per capita, and grassland area per capita play vital roles in the development of LRCC. Based on these findings, we have put forward targeted recommendations.

Suggested Citation

  • Bing Jiang & Wenjie Tang & Meijia Li & Guangchao Yang & Xiaoshang Deng & Lihang Cui, 2023. "Assessing Land Resource Carrying Capacity in China’s Main Grain-Producing Areas: Spatial–Temporal Evolution, Coupling Coordination, and Obstacle Factors," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16699-:d:1297030
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/24/16699/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/24/16699/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gianni Guastella & Stefano Pareglio & Paolo Sckokai, 2017. "A Spatial Econometric Analysis of Land Use Efficiency in Large and Small Municipalities," Working Papers 2017.03, Fondazione Eni Enrico Mattei.
    2. Yingbing Liu & Wenying Du & Nengcheng Chen & Xiaolei Wang, 2020. "Construction and Evaluation of the Integrated Perception Ecological Environment Indicator (IPEEI) Based on the DPSIR Framework for Smart Sustainable Cities," Sustainability, MDPI, vol. 12(17), pages 1-25, August.
    3. Guangdong Wu , & Kaifeng Duan & Jian Zuo & Xianbo Zhao & Daizhong Tang, 2017. "Integrated Sustainability Assessment of Public Rental Housing Community Based on a Hybrid Method of AHP-Entropy Weight and Cloud Model," Sustainability, MDPI, vol. 9(4), pages 1-25, April.
    4. Chau-kiu Cheung & Stephen Ma, 2011. "Coupling Social Solidarity and Social Harmony in Hong Kong," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 103(1), pages 145-167, August.
    5. Haokun Wang & Hong Chen & Tuyen Thi Tran & Shuai Qin, 2022. "An Analysis of the Spatiotemporal Characteristics and Diversity of Grain Production Resource Utilization Efficiency under the Constraint of Carbon Emissions: Evidence from Major Grain-Producing Areas ," IJERPH, MDPI, vol. 19(13), pages 1-25, June.
    6. Caizhi Sun & Yongjie Wu & Wei Zou & Liangshi Zhao & Wenxin Liu, 2018. "A Rural Water Poverty Analysis in China Using the DPSIR-PLS Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(6), pages 1933-1951, April.
    7. Sun, Yu & Cui, Yin, 2018. "Evaluating the coordinated development of economic, social and environmental benefits of urban public transportation infrastructure: Case study of four Chinese autonomous municipalities," Transport Policy, Elsevier, vol. 66(C), pages 116-126.
    8. Yirui Zhao & Tongsheng Li & Julin Li & Mengwei Song, 2022. "Study of Township Construction Land Carrying Capacity and Spatial Pattern Matching in Loess Plateau Hilly and Gully Region: A Case of Xifeng in China," IJERPH, MDPI, vol. 19(23), pages 1-18, December.
    9. Kun Cheng & Qiang Fu & Song Cui & Tian-xiao Li & Wei Pei & Dong Liu & Jun Meng, 2017. "Evaluation of the land carrying capacity of major grain-producing areas and the identification of risk factors," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 263-280, March.
    10. Sharareh Pourebrahim & Mehrdad Hadipour & Zahra Emlaei & Hamidreza Heidari & Choo Ta Goh & Khai Ern Lee, 2023. "Analysis of Environmental Carrying Capacity Based on the Ecological Footprint for the Sustainable Development of Alborz, Iran," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yusuf Kristiadi & Riri Fitri Sari & Herdis Herdiansyah & Hayati Sari Hasibuan & Tiong Hoo Lim, 2022. "Developing DPSIR Framework for Managing Climate Change in Urban Areas: A Case Study in Jakarta, Indonesia," Sustainability, MDPI, vol. 14(23), pages 1-30, November.
    2. Zhipeng Tang & Ziao Mei & Jialing Zou, 2021. "Does the Opening of High-Speed Railway Lines Reduce the Carbon Intensity of China’s Resource-Based Cities?," Energies, MDPI, vol. 14(15), pages 1-18, July.
    3. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Skare, Marinko, 2022. "Inclusive infrastructure development, green innovation, and sustainable resource management: Evidence from China’s trade-adjusted material footprints," Resources Policy, Elsevier, vol. 79(C).
    4. Huang, Guobin & Zhang, Jie & Yu, Jian & Shi, Xunpeng, 2020. "Impact of transportation infrastructure on industrial pollution in Chinese cities: A spatial econometric analysis," Energy Economics, Elsevier, vol. 92(C).
    5. Xiao, Rui & Yu, Xiaoyu & Xiang, Ting & Zhang, Zhonghao & Wang, Xue & Wu, Jianguo, 2021. "Exploring the coordination between physical space expansion and social space growth of China’s urban agglomerations based on hierarchical analysis," Land Use Policy, Elsevier, vol. 109(C).
    6. Yongli Wang & Xiangyi Zhou & Hao Liu & Xichang Chen & Zixin Yan & Dexin Li & Chang Liu & Jiarui Wang, 2023. "Evaluation of the Maturity of Urban Energy Internet Development Based on AHP-Entropy Weight Method and Improved TOPSIS," Energies, MDPI, vol. 16(13), pages 1-18, July.
    7. Junhua Chen & Shufan Ma & Na Liu, 2023. "Multi-dimensional Housing Inequality Index: The Provincial Evidence from China," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 165(2), pages 633-654, January.
    8. Zhou, Yulin & Lan, Feng & Zhou, Tao, 2021. "An experience-based mining approach to supporting urban renewal mode decisions under a multi-stakeholder environment in China," Land Use Policy, Elsevier, vol. 106(C).
    9. Qianqian Huang & Benhong Peng & Xin Sheng & Anxia Wan, 2022. "Exploring new ideas for sustainable development of urban agglomerations-based on the coupling of people’s livelihood and environmental governance," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(8), pages 9985-10004, August.
    10. Jun Dong & Dongxue Wang & Dongran Liu & Palidan Ainiwaer & Linpeng Nie, 2019. "Operation Health Assessment of Power Market Based on Improved Matter-Element Extension Cloud Model," Sustainability, MDPI, vol. 11(19), pages 1-25, October.
    11. Yanting Zheng & Jing He & Wenxiang Zhang & Aifeng Lv, 2023. "Assessing Water Security and Coupling Coordination in the Lancang–Mekong River Basin for Sustainable Development," Sustainability, MDPI, vol. 15(24), pages 1-20, December.
    12. Yu Chen & Qianqian Miao & Qian Zhou, 2022. "Spatiotemporal Differentiation and Driving Force Analysis of the High-Quality Development of Urban Agglomerations along the Yellow River Basin," IJERPH, MDPI, vol. 19(4), pages 1-21, February.
    13. Bin Yang & Zhanqi Wang & Bo Zhang & Di Zhang, 2020. "Allocation Efficiency, Influencing Factors and Optimization Path of Rural Land Resources: A Case Study in Fang County of Hubei Province, China," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    14. Jingjing Liu & Jing Wang & Tianlin Zhai & Zehui Li, 2022. "The Response of Ecologically Functional Land to Changes in Urban Economic Growth and Transportation Construction in China," IJERPH, MDPI, vol. 19(21), pages 1-17, November.
    15. Lu Gan & Yuanyuan Wang & Yusheng Wang & Benjamin Lev & Wenjing Shen & Wen Jiang, 2021. "Coupling coordination analysis with data-driven technology for disaster–economy–ecology system: an empirical study in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2123-2153, July.
    16. Bin Fan & Mingyang Li, 2022. "The Effect of Heterogeneous Environmental Regulations on Carbon Emission Efficiency of the Grain Production Industry: Evidence from China’s Inter-Provincial Panel Data," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    17. Edson Kogachi & Adonias Ferreira & Carlos Cavalcante & Marcelo Embiruçu, 2021. "Development of Performance Evaluation Indicators for Table Grape Packaging Units. 2. Global Indexes," Sustainability, MDPI, vol. 13(11), pages 1-16, June.
    18. Wang, Mengmeng & Zhou, Tao, 2022. "Understanding the dynamic relationship between smart city implementation and urban sustainability," Technology in Society, Elsevier, vol. 70(C).
    19. Liu, Shuchang & Xiao, Wu & Li, Linlin & Ye, Yanmei & Song, Xiaoli, 2020. "Urban land use efficiency and improvement potential in China: A stochastic frontier analysis," Land Use Policy, Elsevier, vol. 99(C).
    20. Elena Andriollo & Alberto Caimo & Laura Secco & Elena Pisani, 2021. "Collaborations in Environmental Initiatives for an Effective “Adaptive Governance” of Social–Ecological Systems: What Existing Literature Suggests," Sustainability, MDPI, vol. 13(15), pages 1-29, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:24:p:16699-:d:1297030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.