IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i22p16000-d1281357.html
   My bibliography  Save this article

A Comparison of Feedstock from Agricultural Biomass and Face Masks for the Production of Biochar through Co-Pyrolysis

Author

Listed:
  • Yasirah Yusoff

    (Institute of Sustainable Energy, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

  • Ee Sann Tan

    (Department of Mechanical Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

  • Firas Basim Ismail

    (Institute of Power Engineering, Universiti Tenaga Nasional, Kajang 43000, Malaysia)

Abstract

This study explores the pyrolysis of disposable face masks to produce chemicals suitable for use as fuel, addressing the environmental concern posed by single-use face masks. Co-pyrolysis of biomass with face mask plastic waste offers a promising solution. The research focuses on the co-pyrolysis of biomass and face masks, aiming to characterise the properties for analysis and optimisation. Selected agricultural biomass and face mask plastic waste were subjected to temperatures from 250 °C to 400 °C for co-pyrolysis. Slow pyrolysis was chosen because face masks cannot be converted into useful bioproducts at temperatures exceeding 400 °C. The samples were tested in four different ratios and the study was conducted under inert conditions to ensure analysis accuracy and reliability. The results indicate that face masks exhibit a remarkable calorific value of 9310 kcal/kg. Face masks show a two-fold increase in calorific value compared with biomass alone. Additionally, the low moisture content of face masks (0.10%) reduces the heating value needed to remove moisture, enhancing their combustion efficiency. This study demonstrates the potential of co-pyrolysis with face masks as a means of generating valuable chemicals for fuel production, contributing to environmental sustainability.

Suggested Citation

  • Yasirah Yusoff & Ee Sann Tan & Firas Basim Ismail, 2023. "A Comparison of Feedstock from Agricultural Biomass and Face Masks for the Production of Biochar through Co-Pyrolysis," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16000-:d:1281357
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/22/16000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/22/16000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nerijus Pedišius & Marius Praspaliauskas & Justinas Pedišius & Eugenija Farida Dzenajavičienė, 2021. "Analysis of Wood Chip Characteristics for Energy Production in Lithuania," Energies, MDPI, vol. 14(13), pages 1-13, June.
    2. Anežka Sedmihradská & Michael Pohořelý & Petr Jevič & Siarhei Skoblia & Zdeněk Beňo & Josef Farták & Bohumír Čech & Miloslav Hartman, 2020. "Pyrolysis of wheat and barley straw," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 66(1), pages 8-17.
    3. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    4. Asadi, Asgar & Zhang, Yaning & Mohammadi, Hassan & Khorand, Hadi & Rui, Zhenhua & Doranehgard, Mohammad Hossein & Bozorg, Mehdi Vahabzadeh, 2019. "Combustion and emission characteristics of biomass derived biofuel, premixed in a diesel engine: A CFD study," Renewable Energy, Elsevier, vol. 138(C), pages 79-89.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    2. Zhao, Ming & Memon, Muhammad Zaki & Ji, Guozhao & Yang, Xiaoxiao & Vuppaladadiyam, Arun K. & Song, Yinqiang & Raheem, Abdul & Li, Jinhui & Wang, Wei & Zhou, Hui, 2020. "Alkali metal bifunctional catalyst-sorbents enabled biomass pyrolysis for enhanced hydrogen production," Renewable Energy, Elsevier, vol. 148(C), pages 168-175.
    3. Zang, Guiyan & Zhang, Jianan & Jia, Junxi & Lora, Electo Silva & Ratner, Albert, 2020. "Life cycle assessment of power-generation systems based on biomass integrated gasification combined cycles," Renewable Energy, Elsevier, vol. 149(C), pages 336-346.
    4. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Gupta, Shubhi & Gupta, Goutam Kishore & Mondal, Monoj Kumar, 2019. "Slow pyrolysis of chemically treated walnut shell for valuable products: Effect of process parameters and in-depth product analysis," Energy, Elsevier, vol. 181(C), pages 665-676.
    6. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    7. Lech Nowicki & Dorota Siuta & Maciej Markowski, 2020. "Pyrolysis of Rapeseed Oil Press Cake and Steam Gasification of Solid Residues," Energies, MDPI, vol. 13(17), pages 1-12, August.
    8. Pérez, Nestor Proenza & Pedroso, Daniel Travieso & Machin, Einara Blanco & Antunes, Julio Santana & Tuna, Celso Eduardo & Silveira, José Luz, 2019. "Geometrical characteristics of sugarcane bagasse for being used as fuel in fluidized bed technologies," Renewable Energy, Elsevier, vol. 143(C), pages 1210-1224.
    9. Liu, Hui & Liu, Jingyong & Huang, Hongyi & Evrendilek, Fatih & Wen, Shaoting & Li, Weixin, 2021. "Optimizing bioenergy and by-product outputs from durian shell pyrolysis," Renewable Energy, Elsevier, vol. 164(C), pages 407-418.
    10. Pang, Yunji & Wu, Yuting & Chen, Yisheng & Luo, Fuliang & Chen, Junjun, 2020. "Degradation effect of Ce/Al2O3 catalyst on pyrolysis volatility of pine," Renewable Energy, Elsevier, vol. 162(C), pages 134-143.
    11. Burov, Nikita O. & Savelenko, Vsevolod D. & Ershov, Mikhail A. & Vikhritskaya, Anastasia O. & Tikhomirova, Ekaterina O. & Klimov, Nikita A. & Kapustin, Vladimir M. & Chernysheva, Elena A. & Sereda, Al, 2023. "Knowledge contribution from science to technology in the conceptualization model to produce sustainable aviation fuels from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 215(C).
    12. Lacrimioara Senila & Ioan Tenu & Petru Carlescu & Daniela Alexandra Scurtu & Eniko Kovacs & Marin Senila & Oana Cadar & Marius Roman & Diana Elena Dumitras & Cecilia Roman, 2022. "Characterization of Biobriquettes Produced from Vineyard Wastes as a Solid Biofuel Resource," Agriculture, MDPI, vol. 12(3), pages 1-13, February.
    13. Tahereh Soleymani Angili & Katarzyna Grzesik & Wojciech Jerzak, 2023. "Comparative Life Cycle Assessment of Catalytic Intermediate Pyrolysis of Rapeseed Meal," Energies, MDPI, vol. 16(4), pages 1-16, February.
    14. Polin, Joseph P. & Peterson, Chad A. & Whitmer, Lysle E. & Smith, Ryan G. & Brown, Robert C., 2019. "Process intensification of biomass fast pyrolysis through autothermal operation of a fluidized bed reactor," Applied Energy, Elsevier, vol. 249(C), pages 276-285.
    15. Živilė Černiauskienė & Algirdas Jonas Raila & Egidijus Zvicevičius & Vita Tilvikienė & Zofija Jankauskienė, 2021. "Comparative Research of Thermochemical Conversion Properties of Coarse-Energy Crops," Energies, MDPI, vol. 14(19), pages 1-15, October.
    16. Saowanee Wijitkosum, 2023. "Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application," Energies, MDPI, vol. 16(2), pages 1-16, January.
    17. Kim, Heeyoon & Yu, Seunghan & Ra, Howon & Yoon, Sungmin & Ryu, Changkook, 2023. "Prediction of pyrolysis kinetics for torrefied biomass based on raw biomass properties and torrefaction severity," Energy, Elsevier, vol. 278(C).
    18. Menelio Bardales & Catherine Bukowski & Valentín Molina-Moreno & Francisco Jesús Gálvez-Sánchez & Ángel Fermín Ramos-Ridao, 2022. "A Tool for the Assessment of Forest Biomass as a Source of Rural Sustainable Energy in Natural Areas in Honduras," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    19. Li, Longzhi & Cai, Dongqiang & Zhang, Lianjie & Zhang, Yue & Zhao, Zhiyang & Zhang, Zhonglei & Sun, Jifu & Tan, Yongdong & Zou, Guifu, 2023. "Synergistic effects during pyrolysis of binary mixtures of biomass components using microwave-assisted heating coupled with iron base tip-metal," Renewable Energy, Elsevier, vol. 203(C), pages 312-322.
    20. Riva, Lorenzo & Nielsen, Henrik Kofoed & Skreiberg, Øyvind & Wang, Liang & Bartocci, Pietro & Barbanera, Marco & Bidini, Gianni & Fantozzi, Francesco, 2019. "Analysis of optimal temperature, pressure and binder quantity for the production of biocarbon pellet to be used as a substitute for coke," Applied Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:22:p:16000-:d:1281357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.