IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14471-d1253444.html
   My bibliography  Save this article

The Extent to Which Hemp Insulation Materials Can Be Used in Canadian Residential Buildings

Author

Listed:
  • Chun Hua Julia Liu

    (REBEL (Resource Efficient Built Environment Lab), Edinburgh EH11 4BN, UK
    School of Engineering and Built Environment, Edinburgh Napier University, Edinburgh EH11 4BN, UK)

  • Francesco Pomponi

    (Institute for Sustainability Leadership (CISL), University of Cambridge, Cambridge CB2 1GG, UK)

  • Bernardino D’Amico

    (REBEL (Resource Efficient Built Environment Lab), Edinburgh EH11 4BN, UK
    School of Engineering and Built Environment, Edinburgh Napier University, Edinburgh EH11 4BN, UK)

Abstract

The embodied carbon of building materials is a significant contributor to greenhouse gas (GHG) emissions. Hemp is widely acknowledged as the most used vegetal insulation in building and construction due to its comparable thermal properties and better environmental performance than that of mainstream insulation materials (MIMs). However, the application of hemp insulation materials (HIMs) in Canada is still in its infancy. Canada is currently the largest hemp oil and seed producer in the world. Most recent research on hemp in Canada has focused on the impact of legalising marijuana and the popularisation of hemp health products and cannabidiol (CBD). There is a lack of studies addressing the holistic impact of hemp in reducing emissions in Canadian residential buildings. This paper exams the feasibility of large-scale hemp cultivation in Canada and the suitability of HIMs for Canadian private dwellings. Material flow analysis (MFA) and life cycle assessment (LCA) were applied to evaluate different levels of carbon mitigation over time produced by HIM substitution. The results show that Canada has sufficient farmland and perfect geographic location and weather to implement large-scale hemp cultivation. HIM substitution can be accomplished for 81% of Canadian residential buildings. Full HIM substitution fulfilled through 5% hemp fibre insulation (HF) and 95% hempcrete (HC) will mitigate 101% of the GHG emissions caused by existing MIMs and contribute up to a 7.38% reduction in emissions to achieve the net zero emissions target by 2050.

Suggested Citation

  • Chun Hua Julia Liu & Francesco Pomponi & Bernardino D’Amico, 2023. "The Extent to Which Hemp Insulation Materials Can Be Used in Canadian Residential Buildings," Sustainability, MDPI, vol. 15(19), pages 1-31, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14471-:d:1253444
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wu, X.D. & Guo, J.L. & Han, M.Y. & Chen, G.Q., 2018. "An overview of arable land use for the world economy: From source to sink via the global supply chain," Land Use Policy, Elsevier, vol. 76(C), pages 201-214.
    2. Pomponi, Francesco & Moncaster, Alice, 2018. "Scrutinising embodied carbon in buildings: The next performance gap made manifest," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2431-2442.
    3. Ingrao, Carlo & Lo Giudice, Agata & Bacenetti, Jacopo & Tricase, Caterina & Dotelli, Giovanni & Fiala, Marco & Siracusa, Valentina & Mbohwa, Charles, 2015. "Energy and environmental assessment of industrial hemp for building applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 29-42.
    4. Chau, C.K. & Leung, T.M. & Ng, W.Y., 2015. "A review on Life Cycle Assessment, Life Cycle Energy Assessment and Life Cycle Carbon Emissions Assessment on buildings," Applied Energy, Elsevier, vol. 143(C), pages 395-413.
    5. Edwin Zea Escamilla & Guillaume Habert & Juan Francisco Correal Daza & Hector F. Archilla & Juan Sebastian Echeverry Fernández & David Trujillo, 2018. "Industrial or Traditional Bamboo Construction? Comparative Life Cycle Assessment (LCA) of Bamboo-Based Buildings," Sustainability, MDPI, vol. 10(9), pages 1-14, August.
    6. Davis, Matthew & Ahiduzzaman, Md. & Kumar, Amit, 2018. "How will Canada’s greenhouse gas emissions change by 2050? A disaggregated analysis of past and future greenhouse gas emissions using bottom-up energy modelling and Sankey diagrams," Applied Energy, Elsevier, vol. 220(C), pages 754-786.
    7. Franz Segovia & Pierre Blanchet & Ben Amor & Costel Barbuta & Robert Beauregard, 2019. "Life Cycle Assessment Contribution in the Product Development Process: Case Study of Wood Aluminum-Laminated Panel," Sustainability, MDPI, vol. 11(8), pages 1-20, April.
    8. Ifeoluwa Adesina & Arnab Bhowmik & Harmandeep Sharma & Abolghasem Shahbazi, 2020. "A Review on the Current State of Knowledge of Growing Conditions, Agronomic Soil Health Practices and Utilities of Hemp in the United States," Agriculture, MDPI, vol. 10(4), pages 1-15, April.
    9. Xianli Wang & Dan Thompson & Ginny Marshall & Cordy Tymstra & Richard Carr & Mike Flannigan, 2015. "Increasing frequency of extreme fire weather in Canada with climate change," Climatic Change, Springer, vol. 130(4), pages 573-586, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Craig Langston & Edwin H. W. Chan & Esther H. K. Yung, 2018. "Hybrid Input-Output Analysis of Embodied Carbon and Construction Cost Differences between New-Build and Refurbished Projects," Sustainability, MDPI, vol. 10(9), pages 1-15, September.
    2. Teodoro Semeraro & Aurelia Scarano & Riccardo Buccolieri & Angelo Santino & Eeva Aarrevaara, 2021. "Planning of Urban Green Spaces: An Ecological Perspective on Human Benefits," Land, MDPI, vol. 10(2), pages 1-26, January.
    3. Pan, W. & Teng, Y., 2021. "A systematic investigation into the methodological variables of embodied carbon assessment of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    5. Weijia Chen & Yongquan Lu & Guilin Liu, 2022. "Balancing cropland gain and desert vegetation loss: The key to rural revitalization in Xinjiang, China," Growth and Change, Wiley Blackwell, vol. 53(3), pages 1122-1145, September.
    6. Patricia González-Vallejo & Radu Muntean & Jaime Solís-Guzmán & Madelyn Marrero, 2020. "Carbon Footprint of Dwelling Construction in Romania and Spain. A Comparative Analysis with the OERCO2 Tool," Sustainability, MDPI, vol. 12(17), pages 1-22, August.
    7. Vassiliki Kotroni & Constantinos Cartalis & Silas Michaelides & Julia Stoyanova & Fillipos Tymvios & Antonis Bezes & Theodoros Christoudias & Stavros Dafis & Christos Giannakopoulos & Theodore M. Gian, 2020. "DISARM Early Warning System for Wildfires in the Eastern Mediterranean," Sustainability, MDPI, vol. 12(16), pages 1-30, August.
    8. Anja Hansen & Jörn Budde & Annette Prochnow, 2016. "Resource Usage Strategies and Trade-Offs between Cropland Demand, Fossil Fuel Consumption, and Greenhouse Gas Emissions—Building Insulation as an Example," Sustainability, MDPI, vol. 8(7), pages 1-24, June.
    9. Ana Ferreira & Manuel Duarte Pinheiro & Jorge de Brito & Ricardo Mateus, 2022. "Embodied vs. Operational Energy and Carbon in Retail Building Shells: A Case Study in Portugal," Energies, MDPI, vol. 16(1), pages 1-23, December.
    10. Gigliola Ausiello & Luca Di Girolamo & Antonio Marano, 2019. "Sustainable Requalification: Hemp, Raw Earth, Sun, and Wind for Energy Strategies in a Case Study in Naples, Italy," Sustainability, MDPI, vol. 11(21), pages 1-13, November.
    11. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    12. Liyin Shen & Junsi Yang & Rong Zhang & Changzhuan Shao & Xiangnan Song, 2019. "The Benefits and Barriers for Promoting Bamboo as a Green Building Material in China—An Integrative Analysis," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    13. Franco-Solís, Alberto & Montanía, Claudia V., 2021. "Dynamics of deforestation worldwide: A structural decomposition analysis of agricultural land use in South America," Land Use Policy, Elsevier, vol. 109(C).
    14. Teodoro Semeraro & Roberta Aretano & Amilcare Barca & Alessandro Pomes & Cecilia Del Giudice & Elisa Gatto & Marcello Lenucci & Riccardo Buccolieri & Rohinton Emmanuel & Zhi Gao & Alessandra Scognamig, 2020. "A Conceptual Framework to Design Green Infrastructure: Ecosystem Services as an Opportunity for Creating Shared Value in Ground Photovoltaic Systems," Land, MDPI, vol. 9(8), pages 1-28, July.
    15. Cheng, Mengyao & Wu, Jialu & Li, Chaohui & Jia, Yuanxin & Xia, Xiaohua, 2023. "Tele-connection of global agricultural land network: Incorporating complex network approach with multi-regional input-output analysis," Land Use Policy, Elsevier, vol. 125(C).
    16. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Matthew Griffin & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2021. "Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes: A Case Study with Real Test Facilities," Energies, MDPI, vol. 14(8), pages 1-17, April.
    17. Wu, X.D. & Ji, Xi & Li, Chaohui & Xia, X.H. & Chen, G.Q., 2019. "Water footprint of thermal power in China: Implications from the high amount of industrial water use by plant infrastructure of coal-fired generation system," Energy Policy, Elsevier, vol. 132(C), pages 452-461.
    18. Zhishan Ma & Susu Zhang & Sidong Zhao, 2021. "Study on the Spatial Pattern of Migration Population in Egypt and Its Flow Field Characteristics from the Perspective of “Source-Flow-Sink”," Sustainability, MDPI, vol. 13(1), pages 1-27, January.
    19. Wang, Zhaohua & Liu, Qiang & Zhang, Bin, 2022. "What kinds of building energy-saving retrofit projects should be preferred? Efficiency evaluation with three-stage data envelopment analysis (DEA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Lachlan Curmi & Kumudu Kaushalya Weththasinghe & Muhammad Atiq Ur Rehman Tariq, 2022. "Global Policy Review on Embodied Flows: Recommendations for Australian Construction Sector," Sustainability, MDPI, vol. 14(21), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14471-:d:1253444. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.