IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i19p14423-d1252351.html
   My bibliography  Save this article

Measurement of CO 2 Emissions Efficiency and Analysis of Influencing Factors of the Logistics Industry in Nine Coastal Provinces of China

Author

Listed:
  • Hanxin Wang

    (School of Management, Hebei GEO University, Shijiazhuang 050031, China
    Strategy and Management Base of Mineral Resources in Hebei Province, Hebei GEO University, Shijiazhuang 050031, China)

  • Weiqian Liu

    (School of Management, Hebei GEO University, Shijiazhuang 050031, China)

  • Yi Liang

    (School of Management, Hebei GEO University, Shijiazhuang 050031, China
    Strategy and Management Base of Mineral Resources in Hebei Province, Hebei GEO University, Shijiazhuang 050031, China)

Abstract

The surge in CO 2 emissions affects global climate change and the development of society. The logistics industry, being a swiftly advancing industry, demonstrates an escalating trend in CO 2 emissions. Therefore, this paper selects the more developed coastal provinces (districts) in China’s logistics industry and takes 2011–2020 as the research period. Using the Super-SBM model and the Malmquist index model, the article analyzes the changes in the carbon emission efficiency of the logistics industry from the static and dynamic perspectives and then explores the factors affecting it using the panel model and the mediating effect model. Findings from research indicate that: (1) The CO 2 emission efficiency of the logistics industry is generally moderate when viewed from a static perspective. (2) Taking a dynamic viewpoint, there is a slight declining trend in the overall CO 2 emission efficiency. (3) As environmental regulations become more stringent, the CO 2 emission efficiency follows the “U”-shaped pattern, initially declining and then rising. Environmental regulations can influence CO 2 emission efficiency by affecting technological innovation. Additionally, energy efficiency plays a positive role in promoting CO 2 emission efficiency. Recommendations: Implement differentiated environmental regulations tailored to local conditions. Emphasize technological innovations. Enhance the energy efficiency.

Suggested Citation

  • Hanxin Wang & Weiqian Liu & Yi Liang, 2023. "Measurement of CO 2 Emissions Efficiency and Analysis of Influencing Factors of the Logistics Industry in Nine Coastal Provinces of China," Sustainability, MDPI, vol. 15(19), pages 1-21, October.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14423-:d:1252351
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/19/14423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/19/14423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhou, P. & Ang, B.W. & Han, J.Y., 2010. "Total factor carbon emission performance: A Malmquist index analysis," Energy Economics, Elsevier, vol. 32(1), pages 194-201, January.
    2. Qiongzhi Liu & Jun Hao, 2022. "Regional Differences and Influencing Factors of Carbon Emission Efficiency in the Yangtze River Economic Belt," Sustainability, MDPI, vol. 14(8), pages 1-15, April.
    3. Hongxing Tu & Wei Dai & Yuan Fang & Xu Xiao, 2022. "Environmental Regulation, Technological Innovation and Industrial Environmental Efficiency: An Empirical Study Based on Chinese Cement Industry," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    4. Liang Liu & Mengyue Li & Xiujuan Gong & Pan Jiang & Ruifeng Jin & Yuhan Zhang, 2022. "Influence Mechanism of Different Environmental Regulations on Carbon Emission Efficiency," IJERPH, MDPI, vol. 19(20), pages 1-19, October.
    5. Hongtao Jiang & Jian Yin & Yuanhong Qiu & Bin Zhang & Yi Ding & Ruici Xia, 2022. "Industrial Carbon Emission Efficiency of Cities in the Pearl River Basin: Spatiotemporal Dynamics and Driving Forces," Land, MDPI, vol. 11(8), pages 1-22, July.
    6. Qinglin Bao & Huaqi Chai & Reza Lotfi, 2022. "Environmental Regulation, Financial Resource Allocation, and Regional Green Technology Innovation Efficiency," Discrete Dynamics in Nature and Society, Hindawi, vol. 2022, pages 1-11, August.
    7. Qizhen Wang & Qian Zhang, 2022. "Foreign Direct Investment and Carbon Emission Efficiency: The Role of Direct and Indirect Channels," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    8. Bin Fan & Mingyang Li, 2022. "The Effect of Heterogeneous Environmental Regulations on Carbon Emission Efficiency of the Grain Production Industry: Evidence from China’s Inter-Provincial Panel Data," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    9. Xiaohong Jiang & Jianxiao Ma & Huizhe Zhu & Xiucheng Guo & Zhaoguo Huang, 2020. "Evaluating the Carbon Emissions Efficiency of the Logistics Industry Based on a Super-SBM Model and the Malmquist Index from a Strong Transportation Strategy Perspective in China," IJERPH, MDPI, vol. 17(22), pages 1-19, November.
    10. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meiling He & Mei Yang & Xiaohui Wu & Jun Pu & Kazuhiro Izui, 2024. "Evaluating and Analyzing the Efficiency and Influencing Factors of Cold Chain Logistics in China’s Major Urban Agglomerations under Carbon Constraints," Sustainability, MDPI, vol. 16(5), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tingting Wu & Junjun Chen & Chengchun Shi & Guidi Yang, 2023. "Carbon Emission Efficiency and Reduction Potential Based on Three-Stage Slacks-Based Measure with Data Envelopment Analysis and Malmquist at the City Scale in Fujian Province, China," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    2. Ruijing Zheng & Yu Cheng & Haimeng Liu & Wei Chen & Xiaodong Chen & Yaping Wang, 2022. "The Spatiotemporal Distribution and Drivers of Urban Carbon Emission Efficiency: The Role of Technological Innovation," IJERPH, MDPI, vol. 19(15), pages 1-22, July.
    3. Hongtao Jiang & Jian Yin & Yuanhong Qiu & Bin Zhang & Yi Ding & Ruici Xia, 2022. "Industrial Carbon Emission Efficiency of Cities in the Pearl River Basin: Spatiotemporal Dynamics and Driving Forces," Land, MDPI, vol. 11(8), pages 1-22, July.
    4. Zhou, P. & Ang, B.W. & Wang, H., 2012. "Energy and CO2 emission performance in electricity generation: A non-radial directional distance function approach," European Journal of Operational Research, Elsevier, vol. 221(3), pages 625-635.
    5. Bo Li & Jing Liu & Qian Liu & Muhammad Mohiuddin, 2022. "The Effects of Broadband Infrastructure on Carbon Emission Efficiency of Resource-Based Cities in China: A Quasi-Natural Experiment from the “Broadband China” Pilot Policy," IJERPH, MDPI, vol. 19(11), pages 1-27, May.
    6. Chia-Nan Wang & Hector Tibo & Duy Hung Duong, 2020. "Renewable Energy Utilization Analysis of Highly and Newly Industrialized Countries Using an Undesirable Output Model," Energies, MDPI, vol. 13(10), pages 1-21, May.
    7. Jie Zhang & Zhencheng Xing & Jigan Wang, 2016. "Analysis of CO 2 Emission Performance and Abatement Potential for Municipal Industrial Sectors in Jiangsu, China," Sustainability, MDPI, vol. 8(7), pages 1-15, July.
    8. Liang Liu & Yuting Zhao & Xiujuan Gong & Shu Liu & Mengyue Li & Yirui Yang & Pan Jiang, 2023. "Threshold Effect of Environmental Regulation and Green Innovation Efficiency: From the Perspective of Chinese Fiscal Decentralization and Environmental Protection Inputs," IJERPH, MDPI, vol. 20(5), pages 1-17, February.
    9. Zhou, Di & Huang, Qing & Chong, Zhaohui, 2022. "Analysis on the effect and mechanism of land misallocation on carbon emissions efficiency: Evidence from China," Land Use Policy, Elsevier, vol. 121(C).
    10. Zhang, Bin & Lu, Danting & He, Yan & Chiu, Yung-ho, 2018. "The efficiencies of resource-saving and environment: A case study based on Chinese cities," Energy, Elsevier, vol. 150(C), pages 493-507.
    11. Ji, Xiang & Li, Guo & Wang, Zhaohua, 2017. "Impact of emission regulation policies on Chinese power firms’ reusable environmental investments and sustainable operations," Energy Policy, Elsevier, vol. 108(C), pages 163-177.
    12. Ling Wang & Zhongchang Chen & Dalai Ma & Pei Zhao, 2013. "Measuring Carbon Emissions Performance in 123 Countries: Application of Minimum Distance to the Strong Efficiency Frontier Analysis," Sustainability, MDPI, vol. 5(12), pages 1-14, December.
    13. Haihong Song & Liyuan Gu & Yifan Li & Xin Zhang & Yuan Song, 2022. "Research on Carbon Emission Efficiency Space Relations and Network Structure of the Yellow River Basin City Cluster," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    14. Xie, Bai-Chen & Shang, Li-Feng & Yang, Si-Bo & Yi, Bo-Wen, 2014. "Dynamic environmental efficiency evaluation of electric power industries: Evidence from OECD (Organization for Economic Cooperation and Development) and BRIC (Brazil, Russia, India and China) countrie," Energy, Elsevier, vol. 74(C), pages 147-157.
    15. Long, Xingle & Zhao, Xicang & Cheng, Faxin, 2015. "The comparison analysis of total factor productivity and eco-efficiency in China's cement manufactures," Energy Policy, Elsevier, vol. 81(C), pages 61-66.
    16. Zhou, Haibo & Yang, Yi & Chen, Yao & Zhu, Joe, 2018. "Data envelopment analysis application in sustainability: The origins, development and future directions," European Journal of Operational Research, Elsevier, vol. 264(1), pages 1-16.
    17. Xian’En Wang & Shimeng Wang & Xipan Wang & Wenbo Li & Junnian Song & Haiyan Duan & Shuo Wang, 2019. "The Assessment of Carbon Performance under the Region-Sector Perspective based on the Nonparametric Estimation: A Case Study of the Northern Province in China," Sustainability, MDPI, vol. 11(21), pages 1-23, October.
    18. Zhang, Wei & Liu, Xuemeng & Wang, Die & Zhou, Jianping, 2022. "Digital economy and carbon emission performance: Evidence at China's city level," Energy Policy, Elsevier, vol. 165(C).
    19. Xu Zhang & Huaping Sun & Taohong Wang, 2022. "Impact of Financial Inclusion on the Efficiency of Carbon Emissions: Evidence from 30 Provinces in China," Energies, MDPI, vol. 15(19), pages 1-15, October.
    20. Nelson Amowine & Zhiqiang Ma & Mingxing Li & Zhixiang Zhou & Benjamin Azembila Asunka & James Amowine, 2019. "Energy Efficiency Improvement Assessment in Africa: An Integrated Dynamic DEA Approach," Energies, MDPI, vol. 12(20), pages 1-17, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:19:p:14423-:d:1252351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.