IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12992-d1227729.html
   My bibliography  Save this article

Assessing Soil Erosion Susceptibility for Past and Future Scenarios in Semiarid Mediterranean Agroecosystems

Author

Listed:
  • Gianluigi Busico

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy)

  • Eleonora Grilli

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy)

  • Silvia C. P. Carvalho

    (Faculty of Sciences, CCIAM (CC Impacts Adaptation & Modelling), cE3c, University of Lisbon, 1649-004 Lisbon, Portugal)

  • Micòl Mastrocicco

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy)

  • Simona Castaldi

    (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy)

Abstract

The evaluation of soil erosion rate, particularly in agricultural lands, is a crucial tool for long-term land management planning. This research utilized the soil and water assessment tool (SWAT) model to simulate soil erosion in a semiarid watershed located in South Portugal. To understand the evolution of the erosive phenomenon over time, soil erosion susceptibility maps for both historical and future periods were created. The historical period exhibited the highest average soil erosion for each land use, followed by the representative concentration pathways (RCPs) 8.5 and 4.5 scenarios. The differences in soil loss between these two RCPs were influenced by the slightly increasing trend of extreme events, particularly notable in RCP 8.5, leading to a higher maximum value of soil erosion. The research highlighted a tendency towards erosion in the agroforestry system known as “montado”, specifically on Leptosols throughout the entire basin. The study confirmed that Leptosols are most susceptible to sediment loss due to their inherent characteristics. Additionally, both “montado” and farmed systems were found to negatively impact soil erosion rates if appropriate antierosion measures are not adopted. This underscores the importance of identifying all factors responsible for land degradation in Mediterranean watersheds. In conclusion, the study highlighted the significance of assessing soil erosion rates in agricultural areas for effective land management planning in the long run. The utilization of the SWAT model and the creation of susceptibility maps provide valuable insights into the erosive phenomenon’s dynamics, urging the implementation of antierosion strategies to protect the soil and combat land degradation in the region.

Suggested Citation

  • Gianluigi Busico & Eleonora Grilli & Silvia C. P. Carvalho & Micòl Mastrocicco & Simona Castaldi, 2023. "Assessing Soil Erosion Susceptibility for Past and Future Scenarios in Semiarid Mediterranean Agroecosystems," Sustainability, MDPI, vol. 15(17), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12992-:d:1227729
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12992/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12992/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gianluigi Busico & Elisabetta Giuditta & Nerantzis Kazakis & Nicolò Colombani, 2019. "A Hybrid GIS and AHP Approach for Modelling Actual and Future Forest Fire Risk Under Climate Change Accounting Water Resources Attenuation Role," Sustainability, MDPI, vol. 11(24), pages 1-20, December.
    2. Pasquale Borrelli & David A. Robinson & Larissa R. Fleischer & Emanuele Lugato & Cristiano Ballabio & Christine Alewell & Katrin Meusburger & Sirio Modugno & Brigitta Schütt & Vito Ferro & Vincenzo Ba, 2017. "An assessment of the global impact of 21st century land use change on soil erosion," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    3. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panos Panagos & Pasquale Borrelli & David Robinson, 2020. "FAO calls for actions to reduce global soil erosion," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 25(5), pages 789-790, May.
    2. Gianluigi Busico & Maria Margarita Ntona & Sílvia C. P. Carvalho & Olga Patrikaki & Konstantinos Voudouris & Nerantzis Kazakis, 2021. "Simulating Future Groundwater Recharge in Coastal and Inland Catchments," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(11), pages 3617-3632, September.
    3. Caterina Samela & Vito Imbrenda & Rosa Coluzzi & Letizia Pace & Tiziana Simoniello & Maria Lanfredi, 2022. "Multi-Decadal Assessment of Soil Loss in a Mediterranean Region Characterized by Contrasting Local Climates," Land, MDPI, vol. 11(7), pages 1-25, July.
    4. Qing Li & Yong Zhou & Li Wang & Qian Zuo & Siqi Yi & Jingyi Liu & Xueping Su & Tao Xu & Yan Jiang, 2021. "The Link between Landscape Characteristics and Soil Losses Rates over a Range of Spatiotemporal Scales: Hubei Province, China," IJERPH, MDPI, vol. 18(21), pages 1-16, October.
    5. Xiukang Wang, 2022. "Managing Land Carrying Capacity: Key to Achieving Sustainable Production Systems for Food Security," Land, MDPI, vol. 11(4), pages 1-21, March.
    6. Jiyun Li & Yong Zhou & Qing Li & Siqi Yi & Lina Peng, 2022. "Exploring the Effects of Land Use Changes on the Landscape Pattern and Soil Erosion of Western Hubei Province from 2000 to 2020," IJERPH, MDPI, vol. 19(3), pages 1-27, January.
    7. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).
    8. Sun, Xueqing & Xiang, Pengcheng & Cong, Kexin, 2023. "Research on early warning and control measures for arable land resource security," Land Use Policy, Elsevier, vol. 128(C).
    9. Langhans, Kelley E. & Schmitt, Rafael J.P. & Chaplin-Kramer, Rebecca & Anderson, Christopher B. & Vargas Bolaños, Christian & Vargas Cabezas, Fermin & Dirzo, Rodolfo & Goldstein, Jesse A. & Horangic,, 2022. "Modeling multiple ecosystem services and beneficiaries of riparian reforestation in Costa Rica," Ecosystem Services, Elsevier, vol. 57(C).
    10. Supriyono Supriyono & Utaya Sugeng & Taryana Didik & Handoyo Budi, 2021. "Spatial-Temporal Trend Analysis of Rainfall Erosivity and Erosivity Density of Tropical Area in Air Bengkulu Watershed, Indonesia," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 125-142, September.
    11. Juliet Katusiime & Brigitta Schütt, 2023. "Towards Legislation Responsive to Integrated Watershed Management Approaches and Land Tenure," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    12. Pignalosa, Antonio & Silvestri, Nicola & Pugliese, Francesco & Corniello, Alfonso & Gerundo, Carlo & Del Seppia, Nicola & Lucchesi, Massimo & Coscini, Nicola & De Paola, Francesco & Giugni, Maurizio, 2022. "Long-term simulations of Nature-Based Solutions effects on runoff and soil losses in a flat agricultural area within the catchment of Lake Massaciuccoli (Central Italy)," Agricultural Water Management, Elsevier, vol. 273(C).
    13. Nirmal Kumar & Sudhir Kumar Singh, 2021. "Soil erosion assessment using earth observation data in a trans-boundary river basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(1), pages 1-34, May.
    14. Mariane Paulina Batalha Roque & José Ambrósio Ferreira Neto & André Luiz Lopes Faria, 2022. "Degraded grassland and the conflict of land use in protected areas of hotspot in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 1475-1492, January.
    15. Andrianarimanana, Mihasina Harinaivo & Yongjian, Pu & Rabezanahary Tanteliniaina, Mirindra Finaritra, 2023. "Assessment of the importance of climate, land, and soil on the global supply for agricultural products and global food security: Evidence from Madagascar," Food Policy, Elsevier, vol. 115(C).
    16. Muhammad Hussain & Muhammad Tayyab & Jiquan Zhang & Ashfaq Ahmad Shah & Kashif Ullah & Ummer Mehmood & Bazel Al-Shaibah, 2021. "GIS-Based Multi-Criteria Approach for Flood Vulnerability Assessment and Mapping in District Shangla: Khyber Pakhtunkhwa, Pakistan," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    17. Godson Chinonyerem Asuoha & Uchenna Paulinus Okafor & Philip Ogbonnia Phil-Eze & Romanus Udegbunam Ayadiuno, 2019. "The Impact of Soil Erosion on Biodiversity Conservation in Isiala Ngwa North LGA, Southeastern Nigeria," Sustainability, MDPI, vol. 11(24), pages 1-17, December.
    18. Hazem Ghassan Abdo & Hussein Almohamad & Ahmed Abdullah Al Dughairi & Motirh Al-Mutiry, 2022. "GIS-Based Frequency Ratio and Analytic Hierarchy Process for Forest Fire Susceptibility Mapping in the Western Region of Syria," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    19. Yafei Wang & Jinfeng Liao & Yao He & Peipei Chen, 2022. "Evolution and Ecological Implications of Land Development and Conservation Patterns on the Qinghai-Tibet Plateau," Land, MDPI, vol. 11(10), pages 1-17, October.
    20. Solangi, Yasir Ahmed & Longsheng, Cheng & Shah, Syed Ahsan Ali, 2021. "Assessing and overcoming the renewable energy barriers for sustainable development in Pakistan: An integrated AHP and fuzzy TOPSIS approach," Renewable Energy, Elsevier, vol. 173(C), pages 209-222.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12992-:d:1227729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.