IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i17p12948-d1226889.html
   My bibliography  Save this article

Coupling Computational Fluid Dynamics and EnergyPlus to Optimize Energy Consumption and Comfort in Air Column Ventilation at a Tall High-Speed Rail Station

Author

Listed:
  • Haitao Wang

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Ning Lu

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Fanghao Wu

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

  • Jianfeng Zhai

    (School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, China)

Abstract

With the rapid development of railways, the air distribution and thermal comfort within waiting halls of high-speed railway stations receive significant attention. In this research, the EnergyPlus and CFD simulation coupling method was employed to investigate three ventilation schemes (column attached ventilation (CAV), side jet ventilation (SJV), column attached with side jet ventilation (CASJV)) for the waiting hall of a high-speed railway station in Guangzhou. The research focused on analyzing the airflow characteristics, thermal comfort, and cooling energy consumption associated with each ventilation method. The results show that thermal stratification phenomena are obvious in summer waiting halls. Most of the predicted mean vote (PMV) values in the research are from −0.5 to 0.5, indicating a comfortable thermal environment. In certain areas of both the CAV and SJV, the LPD 1 > 40%, which may lead to a strong sensation of a cold draft for passengers. Compared with the SJV, the CAV and CASJV save 11.89% and 9.25% in cooling energy consumption, respectively. Therefore, the CASJV is more suitable for applications in high-speed railway station waiting halls. The results of this study aim to support the application of this combination of attached ventilation and an “air column” air supply in high-speed railway stations.

Suggested Citation

  • Haitao Wang & Ning Lu & Fanghao Wu & Jianfeng Zhai, 2023. "Coupling Computational Fluid Dynamics and EnergyPlus to Optimize Energy Consumption and Comfort in Air Column Ventilation at a Tall High-Speed Rail Station," Sustainability, MDPI, vol. 15(17), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12948-:d:1226889
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/17/12948/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/17/12948/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hu, Jianhui & Kawaguchi, Ken'ichi & Ma, Junbin & Nakaso, Yosuke, 2023. "Improving indoor thermal and energy performance of large-space residential buildings via active approaches," Applied Energy, Elsevier, vol. 344(C).
    2. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    2. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    3. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Mortazavi, Mehdi & Schmid, Michael & Moghaddam, Saeed, 2017. "Compact and efficient generator for low grade solar and waste heat driven absorption systems," Applied Energy, Elsevier, vol. 198(C), pages 173-179.
    5. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    6. Adamczyk, Janusz & Dylewski, Robert, 2017. "The impact of thermal insulation investments on sustainability in the construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 421-429.
    7. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    8. Zu, Kan & Qin, Menghao, 2021. "Experimental and modeling investigation of water adsorption of hydrophilic carboxylate-based MOF for indoor moisture control," Energy, Elsevier, vol. 228(C).
    9. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    10. Thangavelu, Sundar Raj & Myat, Aung & Khambadkone, Ashwin, 2017. "Energy optimization methodology of multi-chiller plant in commercial buildings," Energy, Elsevier, vol. 123(C), pages 64-76.
    11. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    12. Jim, C.Y., 2014. "Air-conditioning energy consumption due to green roofs with different building thermal insulation," Applied Energy, Elsevier, vol. 128(C), pages 49-59.
    13. Huang, Yanjun & Khajepour, Amir & Ding, Haitao & Bagheri, Farshid & Bahrami, Majid, 2017. "An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems," Applied Energy, Elsevier, vol. 188(C), pages 576-585.
    14. Shi, Long, 2018. "Theoretical models for wall solar chimney under cooling and heating modes considering room configuration," Energy, Elsevier, vol. 165(PB), pages 925-938.
    15. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    16. Chi-Chun Lo & Shang-Ho Tsai & Bor-Shyh Lin, 2016. "Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study," Energies, MDPI, vol. 9(2), pages 1-16, February.
    17. Huang, Sen & Zuo, Wangda & Sohn, Michael D., 2016. "Amelioration of the cooling load based chiller sequencing control," Applied Energy, Elsevier, vol. 168(C), pages 204-215.
    18. Liu, Zhongbing & Zhang, Yelin & Zhang, Ling & Luo, Yongqiang & Wu, Zhenghong & Wu, Jing & Yin, Yingde & Hou, Guoqing, 2018. "Modeling and simulation of a photovoltaic thermal-compound thermoelectric ventilator system," Applied Energy, Elsevier, vol. 228(C), pages 1887-1900.
    19. Gohar Gholamibozanjani & Mohammed Farid, 2021. "A Critical Review on the Control Strategies Applied to PCM-Enhanced Buildings," Energies, MDPI, vol. 14(7), pages 1-39, March.
    20. Min, Yunran & Chen, Yi & Shi, Wenchao & Yang, Hongxing, 2021. "Applicability of indirect evaporative cooler for energy recovery in hot and humid areas: Comparison with heat recovery wheel," Applied Energy, Elsevier, vol. 287(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:17:p:12948-:d:1226889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.