IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i16p12648-d1221705.html
   My bibliography  Save this article

A Novel Multi Level Dynamic Decomposition Based Coordinated Control of Electric Vehicles in Multimicrogrids

Author

Listed:
  • Muhammad Anique Aslam

    (Department of Electrical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Syed Abdul Rahman Kashif

    (Department of Electrical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan)

  • Muhammad Majid Gulzar

    (Department of Control & Instrumentation Engineering, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

  • Mohammed Alqahtani

    (Department of Industrial Engineering, King Khalid University, Abha 62529, Saudi Arabia)

  • Muhammad Khalid

    (Interdisciplinary Research Center for Renewable Energy and Power Systems (IRC-REPS), King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    Electrical Engineering Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
    SDAIA-KFUPM Joint Research Center for Artificial Intelligence, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia)

Abstract

This paper presents a novel tetra-level dynamic decomposition-based control approach for coordinated operation of electric vehicles in multimicrogrids, which is comprehensive, generic, modular, and secure in nature, to maximize the utilization of renewable energy sources, while meeting the load demands with the resources available. There are a number of microgrids that are connected to the grid. Each microgrid consists of a number of renewable energy sources, energy storage systems, non-renewable energy sources, electric vehicles, and loads. Each distributed energy source or load is controlled by a microsource controller. All microsource controllers with a similar nature are controlled by a unit controller, and all the unit controllers in a microgrid are controlled by a microgrid controller. There is a single multimicrogrid controller at the top. The proposed control scheme was verified through simulation-based case studies.

Suggested Citation

  • Muhammad Anique Aslam & Syed Abdul Rahman Kashif & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "A Novel Multi Level Dynamic Decomposition Based Coordinated Control of Electric Vehicles in Multimicrogrids," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12648-:d:1221705
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/16/12648/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/16/12648/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Faris Adnan Padhilah & Kyeong-Hwa Kim, 2021. "A Centralized Power Flow Control Scheme of EV-Connected DC Microgrid to Satisfy Multi-Objective Problems under Several Constraints," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    2. Ali Ahmad & Syed Abdul Rahman Kashif & Arslan Ashraf & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "Coordinated Economic Operation of Hydrothermal Units with HVDC Link Based on Lagrange Multipliers," Mathematics, MDPI, vol. 11(7), pages 1-19, March.
    3. Wu, Pan & Huang, Wentao & Tai, Nengling & Liang, Shuo, 2018. "A novel design of architecture and control for multiple microgrids with hybrid AC/DC connection," Applied Energy, Elsevier, vol. 210(C), pages 1002-1016.
    4. Abu Bakar Siddique & Hossam A. Gabbar, 2023. "Adaptive Mixed-Integer Linear Programming-Based Energy Management System of Fast Charging Station with Nuclear–Renewable Hybrid Energy System," Energies, MDPI, vol. 16(2), pages 1-22, January.
    5. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    6. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    7. Muhammad Majid Gulzar & Muhammad Iqbal & Sulman Shahzad & Hafiz Abdul Muqeet & Muhammad Shahzad & Muhammad Majid Hussain, 2022. "Load Frequency Control (LFC) Strategies in Renewable Energy-Based Hybrid Power Systems: A Review," Energies, MDPI, vol. 15(10), pages 1-23, May.
    8. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M., 2016. "A multi-agent based scheduling algorithm for adaptive electric vehicles charging," Applied Energy, Elsevier, vol. 177(C), pages 354-365.
    9. Xu, Zhirong & Yang, Ping & Zheng, Chengli & Zhang, Yujia & Peng, Jiajun & Zeng, Zhiji, 2018. "Analysis on the organization and Development of multi-microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2204-2216.
    10. Hache, Emmanuel & Palle, Angélique, 2019. "Renewable energy source integration into power networks, research trends and policy implications: A bibliometric and research actors survey analysis," Energy Policy, Elsevier, vol. 124(C), pages 23-35.
    11. Tianze Lan & Kittisak Jermsittiparsert & Sara T. Alrashood & Mostafa Rezaei & Loiy Al-Ghussain & Mohamed A. Mohamed, 2021. "An Advanced Machine Learning Based Energy Management of Renewable Microgrids Considering Hybrid Electric Vehicles’ Charging Demand," Energies, MDPI, vol. 14(3), pages 1-25, January.
    12. G. V. Brahmendra Kumar & Ratnam Kamala Sarojini & K. Palanisamy & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Large Scale Renewable Energy Integration: Issues and Solutions," Energies, MDPI, vol. 12(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianhong Hao & Ting Huang & Qiuming Xu & Yi Sun, 2023. "Robust Optimal Scheduling of Microgrid with Electric Vehicles Based on Stackelberg Game," Sustainability, MDPI, vol. 15(24), pages 1-15, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Villanueva-Rosario, Junior Alexis & Santos-García, Félix & Aybar-Mejía, Miguel Euclides & Mendoza-Araya, Patricio & Molina-García, Angel, 2022. "Coordinated ancillary services, market participation and communication of multi-microgrids: A review," Applied Energy, Elsevier, vol. 308(C).
    2. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    3. Angelos Patsidis & Adam Dyśko & Campbell Booth & Anastasios Oulis Rousis & Polyxeni Kalliga & Dimitrios Tzelepis, 2023. "Digital Architecture for Monitoring and Operational Analytics of Multi-Vector Microgrids Utilizing Cloud Computing, Advanced Virtualization Techniques, and Data Analytics Methods," Energies, MDPI, vol. 16(16), pages 1-19, August.
    4. Hamdi Abdi, 2022. "A Brief Review of Microgrid Surveys, by Focusing on Energy Management System," Sustainability, MDPI, vol. 15(1), pages 1-20, December.
    5. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Hameedullah Zaheb & Mikaeel Ahmadi & Nisar Ahmad Rahmany & Mir Sayed Shah Danish & Habibullah Fedayi & Atsushi Yona, 2023. "Optimal Grid Flexibility Assessment for Integration of Variable Renewable-Based Electricity Generation," Sustainability, MDPI, vol. 15(20), pages 1-24, October.
    7. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    8. Naderi, Mobin & Khayat, Yousef & Shafiee, Qobad & Blaabjerg, Frede & Bevrani, Hassan, 2023. "Dynamic modeling, stability analysis and control of interconnected microgrids: A review," Applied Energy, Elsevier, vol. 334(C).
    9. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    10. Kong, Xiangyu & Liu, Dehong & Wang, Chengshan & Sun, Fangyuan & Li, Shupeng, 2020. "Optimal operation strategy for interconnected microgrids in market environment considering uncertainty," Applied Energy, Elsevier, vol. 275(C).
    11. Nawaz, Arshad & Zhou, Min & Wu, Jing & Long, Chengnian, 2022. "A comprehensive review on energy management, demand response, and coordination schemes utilization in multi-microgrids network," Applied Energy, Elsevier, vol. 323(C).
    12. Hyuk-Il Kwon & Yun-Sung Cho & Sang-Min Choi, 2020. "A Study on Optimal Power System Reinforcement Measures Following Renewable Energy Expansion," Energies, MDPI, vol. 13(22), pages 1-34, November.
    13. Changhao Lv & Qingquan Jia & Lijuan Lin & Jinwei Cui, 2023. "Local Frequency Modulation Strategy Based on Controllable Load Characteristic Identification of Multi-Port Power Router," Energies, MDPI, vol. 16(9), pages 1-22, April.
    14. Qingle Pang & Lin Ye & Houlei Gao & Xinian Li & Yang Zheng & Chenbin He, 2021. "Penalty Electricity Price-Based Optimal Control for Distribution Networks," Energies, MDPI, vol. 14(7), pages 1-16, March.
    15. Li Zeng & Tian Xia & Salah K. Elsayed & Mahrous Ahmed & Mostafa Rezaei & Kittisak Jermsittiparsert & Udaya Dampage & Mohamed A. Mohamed, 2021. "A Novel Machine Learning-Based Framework for Optimal and Secure Operation of Static VAR Compensators in EAFs," Sustainability, MDPI, vol. 13(11), pages 1-17, May.
    16. Li, Qiang & Gao, Mengkai & Lin, Houfei & Chen, Ziyu & Chen, Minyou, 2019. "MAS-based distributed control method for multi-microgrids with high-penetration renewable energy," Energy, Elsevier, vol. 171(C), pages 284-295.
    17. Barbara Uliasz-Misiak & Joanna Lewandowska-Śmierzchalska & Rafał Matuła & Radosław Tarkowski, 2022. "Prospects for the Implementation of Underground Hydrogen Storage in the EU," Energies, MDPI, vol. 15(24), pages 1-17, December.
    18. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    19. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    20. Clement Bonnet & Samuel Carcanague & Emmanuel Hache & Gondia Seck & Marine Simoën, 2019. "Vers une Géopolitique de l'énergie plus complexe ? Une analyse prospective tridimensionnelle de la transition énergétique," Working Papers hal-02971706, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:16:p:12648-:d:1221705. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.