IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3860-d391024.html
   My bibliography  Save this article

A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems

Author

Listed:
  • Athira M. Mohan

    (The Department of Electrical Engineering, Qatar University, Doha 2713, Qatar)

  • Nader Meskin

    (The Department of Electrical Engineering, Qatar University, Doha 2713, Qatar)

  • Hasan Mehrjerdi

    (The Department of Electrical Engineering, Qatar University, Doha 2713, Qatar)

Abstract

Power systems are complex systems that have great importance to socio-economic development due to the fact that the entire world relies on the electric network power supply for day-to-day life. Therefore, for the stable operation of power systems, several protection and control techniques are necessary. The power system controllers should have the ability to maintain power system stability. Three important quantities that should be effectively controlled to maintain the stability of power systems are frequency, rotor angle, and voltage. The voltage control in power systems maintains the voltage and reactive power within the required limits and the power factor control enhances the efficiency of power distribution systems by improving load power factors. Among various controls, the frequency control is the most time-consuming control mechanism of power systems due to the involvement of mechanical parts. As the control algorithms of frequency stabilization deliver control signals in the timescale of seconds, load frequency control (LFC) systems cannot handle complicated data validation algorithms, making them more vulnerable to disturbances and cyber-attacks. In addition, the LFC system has extended digital layers with open communication networks and is designed to operate with less human intervention. Moreover, the frequency fluctuation due to load change or cyber-attack in one area affects all other interconnected areas, and thus threatens the stability of the entire network. Due to these circumstances, research activities are still carried out in the field of frequency control and cyber-security. In this paper, a comprehensive review of the cyber-security of the LFC mechanism in the power system is presented. The highlights of the paper include the identification of attack points of different configurations of the LFC system, discussion of the attack strategies, formulation of various attack models, and a brief review of the existing detection and defense mechanisms against cyber-attacks on LFC.

Suggested Citation

  • Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3860-:d:391024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3860/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3860/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pandey, Shashi Kant & Mohanty, Soumya R. & Kishor, Nand, 2013. "A literature survey on load–frequency control for conventional and distribution generation power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 318-334.
    2. Luo, Xiaoyuan & Wang, Xinyu & Zhang, Mingyue & Guan, Xinping, 2019. "Distributed detection and isolation of bias injection attack in smart energy grid via interval observer," Applied Energy, Elsevier, vol. 256(C).
    3. Athanasios Dagoumas, 2019. "Assessing the Impact of Cybersecurity Attacks on Power Systems," Energies, MDPI, vol. 12(4), pages 1-23, February.
    4. Jingshuang Shen & Chuanwen Jiang & Bosong Li, 2015. "Controllable Load Management Approaches in Smart Grids," Energies, MDPI, vol. 8(10), pages 1-16, October.
    5. Hassan Haes Alhelou & Mohamad-Esmail Hamedani-Golshan & Reza Zamani & Ehsan Heydarian-Forushani & Pierluigi Siano, 2018. "Challenges and Opportunities of Load Frequency Control in Conventional, Modern and Future Smart Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(10), pages 1-35, September.
    6. Fei Zhao & Jinsha Yuan & Ning Wang & Zhang Zhang & Helong Wen, 2019. "Secure Load Frequency Control of Smart Grids under Deception Attack: A Piecewise Delay Approach," Energies, MDPI, vol. 12(12), pages 1-15, June.
    7. Babak Arbab-Zavar & Emilio J. Palacios-Garcia & Juan C. Vasquez & Josep M. Guerrero, 2019. "Smart Inverters for Microgrid Applications: A Review," Energies, MDPI, vol. 12(5), pages 1-22, March.
    8. Qi Wang & Wei Tai & Yi Tang & Hong Zhu & Ming Zhang & Dongxu Zhou, 2019. "Coordinated Defense of Distributed Denial of Service Attacks against the Multi-Area Load Frequency Control Services," Energies, MDPI, vol. 12(13), pages 1-19, June.
    9. Saeed Ahmed & YoungDoo Lee & Seung-Ho Hyun & Insoo Koo, 2019. "Mitigating the Impacts of Covert Cyber Attacks in Smart Grids Via Reconstruction of Measurement Data Utilizing Deep Denoising Autoencoders," Energies, MDPI, vol. 12(16), pages 1-24, August.
    10. G. V. Brahmendra Kumar & Ratnam Kamala Sarojini & K. Palanisamy & Sanjeevikumar Padmanaban & Jens Bo Holm-Nielsen, 2019. "Large Scale Renewable Energy Integration: Issues and Solutions," Energies, MDPI, vol. 12(10), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinghua Liu & Siwei Qiao & Zhiwei Liu, 2023. "A Survey on Load Frequency Control of Multi-Area Power Systems: Recent Challenges and Strategies," Energies, MDPI, vol. 16(5), pages 1-22, February.
    2. Marilena Stănculescu & Sorin Deleanu & Paul Cristian Andrei & Horia Andrei, 2021. "A Case Study of an Industrial Power Plant under Cyberattack: Simulation and Analysis," Energies, MDPI, vol. 14(9), pages 1-20, April.
    3. Félix Dubuisson & Miloud Rezkallah & Hussein Ibrahim & Ambrish Chandra, 2021. "Real-Time Implementation of the Predictive-Based Control with Bacterial Foraging Optimization Technique for Power Management in Standalone Microgrid Application," Energies, MDPI, vol. 14(6), pages 1-15, March.
    4. Vijayshankar, Sanjana & Chang, Chin-Yao & Utkarsh, Kumar & Wald, Dylan & Ding, Fei & Balamurugan, Sivasathya Pradha & King, Jennifer & Macwan, Richard, 2023. "Assessing the impact of cybersecurity attacks on energy systems," Applied Energy, Elsevier, vol. 345(C).
    5. Mishra, Dillip Kumar & Ray, Prakash Kumar & Li, Li & Zhang, Jiangfeng & Hossain, M.J. & Mohanty, Asit, 2022. "Resilient control based frequency regulation scheme of isolated microgrids considering cyber attack and parameter uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    6. Agbodoh-Falschau, Kouassi Raymond & Ravaonorohanta, Bako Harinivo, 2023. "Investigating the influence of governance determinants on reporting cybersecurity incidents to police: Evidence from Canadian organizations’ perspectives," Technology in Society, Elsevier, vol. 74(C).
    7. Miłosz Stypiński & Marcin Niemiec, 2023. "Security of Neural Network-Based Key Agreement Protocol for Smart Grids," Energies, MDPI, vol. 16(10), pages 1-11, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    2. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    3. Ashraf Khalil & Ang Swee Peng, 2018. "A New Method for Computing the Delay Margin for the Stability of Load Frequency Control Systems," Energies, MDPI, vol. 11(12), pages 1-18, December.
    4. Berghout, Tarek & Benbouzid, Mohamed & Muyeen, S.M., 2022. "Machine learning for cybersecurity in smart grids: A comprehensive review-based study on methods, solutions, and prospects," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    5. Shan, Kui & Wang, Shengwei & Zhuang, Chaoqun, 2021. "Controlling a large constant speed centrifugal chiller to provide grid frequency regulation: A validation based on onsite tests," Applied Energy, Elsevier, vol. 300(C).
    6. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    7. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    8. Emad A. Mohamed & Mokhtar Aly & Masayuki Watanabe, 2022. "New Tilt Fractional-Order Integral Derivative with Fractional Filter (TFOIDFF) Controller with Artificial Hummingbird Optimizer for LFC in Renewable Energy Power Grids," Mathematics, MDPI, vol. 10(16), pages 1-33, August.
    9. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    10. Amil Daraz & Suheel Abdullah Malik & Ihsan Ul Haq & Khan Bahadar Khan & Ghulam Fareed Laghari & Farhan Zafar, 2020. "Modified PID controller for automatic generation control of multi-source interconnected power system using fitness dependent optimizer algorithm," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-31, November.
    11. Narendra Kumar Jena & Subhadra Sahoo & Binod Kumar Sahu & Amiya Kumar Naik & Mohit Bajaj & Stanislav Misak & Vojtech Blazek & Lukas Prokop, 2023. "Impact of a Redox Flow Battery on the Frequency Stability of a Five-Area System Integrated with Renewable Sources," Energies, MDPI, vol. 16(14), pages 1-29, July.
    12. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    13. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    14. Namhla Mtukushe & Adeniyi K. Onaolapo & Anuoluwapo Aluko & David G. Dorrell, 2023. "Review of Cyberattack Implementation, Detection, and Mitigation Methods in Cyber-Physical Systems," Energies, MDPI, vol. 16(13), pages 1-25, July.
    15. Martin Onyeka Okoye & Junyou Yang & Zhenjiang Lei & Jingwei Yuan & Huichao Ji & Haixin Wang & Jiawei Feng & Tunmise Ayode Otitoju & Weidong Li, 2020. "Predictive Reliability Assessment of Generation System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    16. Rajan, Rijo & Fernandez, Francis M. & Yang, Yongheng, 2021. "Primary frequency control techniques for large-scale PV-integrated power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Li, Yunfeng & Xue, Wenli & Wu, Ting & Wang, Huaizhi & Zhou, Bin & Aziz, Saddam & He, Yang, 2021. "Intrusion detection of cyber physical energy system based on multivariate ensemble classification," Energy, Elsevier, vol. 218(C).
    18. Anh-Tuan Tran & Bui Le Ngoc Minh & Van Van Huynh & Phong Thanh Tran & Emmanuel Nduka Amaefule & Van-Duc Phan & Tam Minh Nguyen, 2021. "Load Frequency Regulator in Interconnected Power System Using Second-Order Sliding Mode Control Combined with State Estimator," Energies, MDPI, vol. 14(4), pages 1-17, February.
    19. Muhammad Anique Aslam & Syed Abdul Rahman Kashif & Muhammad Majid Gulzar & Mohammed Alqahtani & Muhammad Khalid, 2023. "A Novel Multi Level Dynamic Decomposition Based Coordinated Control of Electric Vehicles in Multimicrogrids," Sustainability, MDPI, vol. 15(16), pages 1-29, August.
    20. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3860-:d:391024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.