IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i15p11715-d1205760.html
   My bibliography  Save this article

Optimal Allocation and Sizing of Decentralized Solar Photovoltaic Generators Using Unit Financial Impact Indicator

Author

Listed:
  • Ozcel Cangul

    (Institute for Risk and Uncertainty, University of Liverpool, Liverpool L69 3BX, UK)

  • Roberto Rocchetta

    (Smart Energy Systems Group, University of Applied Sciences and Arts of Southern Switzerland SUPSI-ISAAC, CH-6850 Mendrisio, Switzerland)

  • Murat Fahrioglu

    (Department of Electrical and Electronics Engineering, Middle East Technical University, Northern Cyprus Campus, Mersin 99738, Turkey)

  • Edoardo Patelli

    (Department of Civil and Environmental Engineering, University of Strathclyde, Glasgow G1 1XJ, UK)

Abstract

A novel financial metric denominated unit financial impact indicator (UFII) is proposed to minimize the payback period for solar photovoltaic (PV) systems investments and quantify the financial efficiency of allocation and sizing strategies. However, uncontrollable environmental conditions and operational uncertainties, such as variable power demands, component failures, and weather conditions, can threaten the robustness of the investment, and their effect needs to be accounted for. Therefore, a new probabilistic framework is proposed for the robust and optimal positioning and sizing of utility-scale PV systems in a transmission network. The probabilistic framework includes a new cloud intensity simulator to model solar photovoltaic power production based on historical data and quantified using an efficient Monte Carlo method. The optimized solution obtained using weighted sums of expected UFII and its variance is compared against those obtained by using well-established economic metrics from literature. The efficiency and usefulness of the proposed approach are tested on the 14-bus IEEE power grid case study. The results prove the applicability and efficacy of the new probabilistic metric to quantify the financial effectiveness of solar photovoltaic investments on different nodes and geographical regions in a power grid, considering the unavoidable conditional and operational uncertainty.

Suggested Citation

  • Ozcel Cangul & Roberto Rocchetta & Murat Fahrioglu & Edoardo Patelli, 2023. "Optimal Allocation and Sizing of Decentralized Solar Photovoltaic Generators Using Unit Financial Impact Indicator," Sustainability, MDPI, vol. 15(15), pages 1-24, July.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11715-:d:1205760
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/15/11715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/15/11715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Henni, Sarah & Staudt, Philipp & Kandiah, Balendra & Weinhardt, Christof, 2021. "Infrastructural coupling of the electricity and gas distribution grid to reduce renewable energy curtailment," Applied Energy, Elsevier, vol. 288(C).
    2. Pesaran H.A., Mahmoud & Nazari-Heris, Morteza & Mohammadi-Ivatloo, Behnam & Seyedi, Heresh, 2020. "A hybrid genetic particle swarm optimization for distributed generation allocation in power distribution networks," Energy, Elsevier, vol. 209(C).
    3. Nikkhah, Saman & Rabiee, Abbas, 2018. "Optimal wind power generation investment, considering voltage stability of power systems," Renewable Energy, Elsevier, vol. 115(C), pages 308-325.
    4. Mohammad AlMuhaini & Abass Yahaya & Ahmed AlAhmed, 2023. "Distributed Generation and Load Modeling in Microgrids," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    5. Syed Ali Abbas Kazmi & Muhammad Khuram Shahzad & Akif Zia Khan & Dong Ryeol Shin, 2017. "Smart Distribution Networks: A Review of Modern Distribution Concepts from a Planning Perspective," Energies, MDPI, vol. 10(4), pages 1-47, April.
    6. Rocchetta, R. & Li, Y.F. & Zio, E., 2015. "Risk assessment and risk-cost optimization of distributed power generation systems considering extreme weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 47-61.
    7. Md. Shouquat Hossain & Naseer Abboodi Madlool & Ali Wadi Al-Fatlawi & Mamdouh El Haj Assad, 2023. "High Penetration of Solar Photovoltaic Structure on the Grid System Disruption: An Overview of Technology Advancement," Sustainability, MDPI, vol. 15(2), pages 1-25, January.
    8. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guido C. Guerrero-Liquet & Santiago Oviedo-Casado & J. M. Sánchez-Lozano & M. Socorro García-Cascales & Javier Prior & Antonio Urbina, 2018. "Determination of the Optimal Size of Photovoltaic Systems by Using Multi-Criteria Decision-Making Methods," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    2. J. Rajalakshmi & S. Durairaj, 2021. "Application of multi-objective optimization algorithm for siting and sizing of distributed generations in distribution networks," Journal of Combinatorial Optimization, Springer, vol. 41(2), pages 267-289, February.
    3. Yazhou Zhao & Xiangxi Qin & Xiangyu Shi, 2022. "A Comprehensive Evaluation Model on Optimal Operational Schedules for Battery Energy Storage System by Maximizing Self-Consumption Strategy and Genetic Algorithm," Sustainability, MDPI, vol. 14(14), pages 1-34, July.
    4. Fan, Zhi-Ping & Cai, Siqin & Guo, Dongliang & Xu, Bo, 2022. "Facing the uncertainty of renewable energy production: Production decisions of a power plant with different risk attitudes," Renewable Energy, Elsevier, vol. 199(C), pages 1237-1247.
    5. Yi‐Ping Fang & Giovanni Sansavini & Enrico Zio, 2019. "An Optimization‐Based Framework for the Identification of Vulnerabilities in Electric Power Grids Exposed to Natural Hazards," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 1949-1969, September.
    6. Mohammad Soleimani Amiri & Rizauddin Ramli & Ahmad Barari, 2023. "Optimally Initialized Model Reference Adaptive Controller of Wearable Lower Limb Rehabilitation Exoskeleton," Mathematics, MDPI, vol. 11(7), pages 1-14, March.
    7. Keck, Felix & Jütte, Silke & Lenzen, Manfred & Li, Mengyu, 2022. "Assessment of two optimisation methods for renewable energy capacity expansion planning," Applied Energy, Elsevier, vol. 306(PA).
    8. Jayanta Bhusan Basu & Subhojit Dawn & Pradip Kumar Saha & Mitul Ranjan Chakraborty & Taha Selim Ustun, 2022. "Economic Enhancement of Wind–Thermal–Hydro System Considering Imbalance Cost in Deregulated Power Market," Sustainability, MDPI, vol. 14(23), pages 1-25, November.
    9. Zhang, Rongda & Wei, Jing & Zhao, Xiaoli & Liu, Yang, 2022. "Economic and environmental benefits of the integration between carbon sequestration and underground gas storage," Energy, Elsevier, vol. 260(C).
    10. José Adriano da Costa & David Alves Castelo Branco & Max Chianca Pimentel Filho & Manoel Firmino de Medeiros Júnior & Neilton Fidelis da Silva, 2019. "Optimal Sizing of Photovoltaic Generation in Radial Distribution Systems Using Lagrange Multipliers," Energies, MDPI, vol. 12(9), pages 1-19, May.
    11. Julián Alejandro Vega-Forero & Jairo Stiven Ramos-Castellanos & Oscar Danilo Montoya, 2023. "Application of the Generalized Normal Distribution Optimization Algorithm to the Optimal Selection of Conductors in Three-Phase Asymmetric Distribution Networks," Energies, MDPI, vol. 16(3), pages 1-35, January.
    12. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    13. Hossain, Eklas & Roy, Shidhartho & Mohammad, Naeem & Nawar, Nafiu & Dipta, Debopriya Roy, 2021. "Metrics and enhancement strategies for grid resilience and reliability during natural disasters," Applied Energy, Elsevier, vol. 290(C).
    14. Cristina Johansson & Johan Ölvander & Micael Derelöv, 2018. "Multi-objective optimization for safety and reliability trade-off: Optimization and results processing," Journal of Risk and Reliability, , vol. 232(6), pages 661-676, December.
    15. Katheryn Donado & Loraine Navarro & Christian G. Quintero M. & Mauricio Pardo, 2019. "HYRES: A Multi-Objective Optimization Tool for Proper Configuration of Renewable Hybrid Energy Systems," Energies, MDPI, vol. 13(1), pages 1-20, December.
    16. Oscar Danilo Montoya & Walter Gil-González & Edwin Rivas-Trujillo, 2020. "Optimal Location-Reallocation of Battery Energy Storage Systems in DC Microgrids," Energies, MDPI, vol. 13(9), pages 1-20, May.
    17. Pereira, Luan D.L. & Yahyaoui, Imene & Fiorotti, Rodrigo & de Menezes, Luíza S. & Fardin, Jussara F. & Rocha, Helder R.O. & Tadeo, Fernando, 2022. "Optimal allocation of distributed generation and capacitor banks using probabilistic generation models with correlations," Applied Energy, Elsevier, vol. 307(C).
    18. Sohani Liyanage & Hussein Dia & Rusul Abduljabbar & Saeed Asadi Bagloee, 2019. "Flexible Mobility On-Demand: An Environmental Scan," Sustainability, MDPI, vol. 11(5), pages 1-39, February.
    19. Ibrahim Alotaibi & Mohammed A. Abido & Muhammad Khalid & Andrey V. Savkin, 2020. "A Comprehensive Review of Recent Advances in Smart Grids: A Sustainable Future with Renewable Energy Resources," Energies, MDPI, vol. 13(23), pages 1-41, November.
    20. Peteris Apse-Apsitis & Oskars Krievs & Ansis Avotins, 2023. "Impact of Household PV Generation on the Voltage Quality in 0.4 kV Electric Grid—Case Study," Energies, MDPI, vol. 16(6), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:15:p:11715-:d:1205760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.